1
|
Chen X, Zheng Z, Zhang N, Yu H, Wu Y, Shi F. Incidence and Severity Distribution of Sweet Cherry ( Prunus avium) and Their Influencing Factors in Southwest China. PLANT DISEASE 2025; 109:816-824. [PMID: 40139982 DOI: 10.1094/pdis-08-24-1727-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Root rot disease is a significant constraint to sweet cherry production in the highlands of southwest China, causing substantial yield losses. While the disease is prevalent, the complex interplay of climate, topography, soil, and management practices on its development remains poorly understood. To address this knowledge gap, a field survey encompassing 95 field sites was conducted to assess disease incidence (DI) and canopy damage index (CDI). Our results showed that the average DI and CDI were 27.04 and 20.52%, respectively. DI and CDI were influenced by management practices: they both increased with the number of planting years and were lower with Cerasus szechuanica rootstock and composted animal manures compared with Da-qingye rootstock and uncomposted animal manures. Climatic and topographic factors also played an important role in observing higher DI at higher altitudes and shady slopes (P < 0.05). Moreover, both DI and CDI demonstrated positive correlations with the aridity index and sunshine duration and negative correlations with mean annual temperature and mean annual precipitation (P < 0.05). Soil properties, including moisture content, bulk density, pH, and sand content, were positively associated with DI and CDI, while clay content and available potassium exhibited negative correlation. The present study emphasizes the combined impact of multiple factors on root rot disease in sweet cherry, with management practices and soil properties having a more decisive effect than climate and topography. These findings provide crucial insights for developing effective disease management strategies.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Nannan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Hongdou Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Yan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Fusun Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| |
Collapse
|
2
|
Vinchira-Villarraga D, Dhaouadi S, Milenkovic V, Wei J, Grace ER, Hinton KG, Webster AJ, Vadillo-Dieguez A, Powell SE, Korotania N, Castellanos L, Ramos FA, Harrison RJ, Rabiey M, Jackson RW. Metabolic profiling and antibacterial activity of tree wood extracts obtained under variable extraction conditions. Metabolomics 2024; 21:13. [PMID: 39729149 PMCID: PMC11680671 DOI: 10.1007/s11306-024-02215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Tree bacterial diseases are a threat in forestry due to their increasing incidence and severity. Understanding tree defence mechanisms requires evaluating metabolic changes arising during infection. Metabolite extraction affects the chemical diversity of the samples and, therefore, the biological relevance of the data. Metabolite extraction has been standardized for several biological models. However, little information is available regarding how it influences wood extract's chemical diversity. OBJECTIVES This study aimed to develop a methodological approach to obtain extracts from different tree species with the highest reproducibility and chemical diversity possible, to ensure proper coverage of the trees' metabolome. METHODS A full factorial design was used to evaluate the effect of solvent type, extraction temperature and number of extraction cycles on the metabolic profile, chemical diversity and antibacterial activity of four tree species. RESULTS Solvent, temperature and their interaction significantly affected the extracts' chemical diversity, while the number of extraction cycles positively correlated with yield and antibacterial activity. Although 60% of the features were recovered in all the tested conditions, differences in the presence and abundance of specific chemical classes per tree were observed, including organooxygen compounds, prenol lipids, carboxylic acids, and flavonoids. CONCLUSIONS Each tree species has a unique metabolic profile, which means that no single protocol is universally effective. Extraction at 50 °C for three cycles using 80% methanol or chloroform/methanol/water showed the best results and is suggested for studying wood metabolome. These observations highlight the need to tailor extraction protocols to each tree species to ensure comprehensive metabolome coverage for metabolic profiling.
Collapse
Affiliation(s)
- Diana Vinchira-Villarraga
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vanja Milenkovic
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jiaqi Wei
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emily R Grace
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katherine G Hinton
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Webster
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea Vadillo-Dieguez
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie E Powell
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Leonardo Castellanos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Carrera 30# 45-03, Bogotá, D.C, 111321, Colombia
| | - Freddy A Ramos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Carrera 30# 45-03, Bogotá, D.C, 111321, Colombia
| | - Richard J Harrison
- Plant Sciences Group, Wageningen University & Research, Wageningen, 6700AA, The Netherlands
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK.
| | - Robert W Jackson
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Chen Y, Gou Y, Huang T, Chen Y, You C, Que Y, Gao S, Su Y. Characterization of the chitinase gene family in Saccharum reveals the disease resistance mechanism of ScChiVII1. PLANT CELL REPORTS 2024; 43:299. [PMID: 39616552 DOI: 10.1007/s00299-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE A chitinase gene ScChiVII1 which is involved in defense against pathogen stress was characterized in sugarcane. Chitinases, a subclass of pathogenesis-related proteins, catalyze chitin hydrolysis and play a key role in plant defense against chitin-containing pathogens. However, there is little research on disease resistance analysis of chitinase genes in sugarcane, and the systematic identification of their gene families has not been reported. In this study, 85 SsChi and 23 ShChi genes, which were divided into 6 groups, were identified from the wild sugarcane species Saccharum spontaneum and Saccharum hybrid cultivar R570, respectively. Transcriptome analysis and real-time quantitative PCR revealed that SsChi genes responded to smut pathogen stress. The chitinase crude extracted from the leaves of transgenic Nicotiana benthamiana plants overexpressing ScChiVII1 (a homologous gene of SsChi22a) inhibited the hyphal growth of Fusarium solani var. coeruleum and Sporisorium scitamineum. Notably, the chitinase and catalase activities and the jasmonic acid content in the leaves of ScChiVII1 transgenic N. benthamiana increased after inoculation with F solani var. coeruleum, but the salicylic acid, hydrogen peroxide, and malondialdehyde contents decreased. Comprehensive RNA sequencing of leaves before (0 day) and after inoculation (2 days) revealed that ScChiVII1 transgenic tobacco enhanced plant disease resistance by activating transcription factors and disease resistance-related signaling pathways, and modulating the expression of genes involved in the hypersensitive response and ethylene synthesis pathways. Taken together, this study provides comprehensive information on the chitinase gene family and offers potential genetic resources for disease resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Gou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingchen Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Yu W, Liang F, Li Y, Jiang W, Li Y, Shen Z, Fang T, Zeng L. Comprehensive Genome-Wide Analysis of the Receptor-like Protein Gene Family and Functional Analysis of PeRLP8 Associated with Crown Rot Resistance in Passiflora edulis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3264. [PMID: 39683056 DOI: 10.3390/plants13233264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Passion fruit (Passiflora edulis Sims) is a Passifloraceae plant with high economic value. Crown rot caused by Rhizoctonia solani is a major fungal disease, which can seriously reduce the yield and quality of passion fruit. Receptor-like proteins (RLPs), which act as pathogen recognition receptors, are widely involved in plant immune responses and developmental processes. However, the role of RLP family members of passion fruit in resistance to crown rot remains unclear. In this study, evolutionary dynamics analysis and comprehensive genomic characterization of the RLP genes family were performed on passion fruit. A total of 141 PeRLPs in the genome of the 'Zixiang' cultivar and 79 PesRLPs in the genome of the 'Tainong' cultivar were identified, respectively. Evolutionary analysis showed that proximal and dispersed duplication events were the primary drivers of RLP family expansion. RNA-seq data and RT-qPCR analysis showed that PeRLPs were constitutively expressed in different tissues and induced by low temperature, JA, MeJA, and SA treatments. The PeRLP8 gene was identified as the hub gene by RNA-seq analysis of passion fruit seedlings infected by Rhizoctonia solani. The expression levels of PeRLP8 of the resistant variety Passiflora maliformis (LG) were significantly higher than those of the sensitive variety Passiflora edulis f. flavicarpa (HG). Transient overexpression of PeRLP8 tobacco and passion fruit leaves enhanced the resistance to Rhizoctonia solani, resulting in reduced lesion areas by 52.06% and 54.17%, respectively. In addition, it can increase reactive oxygen species levels and upregulated expression of genes related to active oxygen biosynthesis and JA metabolism in passion fruit leaves. Our research provides new insights into the molecular mechanism and breeding strategy of passion fruit resistance to crown rot.
Collapse
Affiliation(s)
- Weijun Yu
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Fan Liang
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Li
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjie Jiang
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongkang Li
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zitao Shen
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Fang
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- Institute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Cui Q, Li X, Hu S, Yang D, Abozeid A, Yang Z, Jiang J, Ren Z, Li D, Li D, Zheng L, Qin A. The Critical Role of Phenylpropanoid Biosynthesis Pathway in Lily Resistance Against Gray Mold. Int J Mol Sci 2024; 25:11068. [PMID: 39456848 PMCID: PMC11507431 DOI: 10.3390/ijms252011068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Gray mold caused by Botrytis elliptica is one of the most determinative factors of lily growth and has become a major threat to lily productivity. However, the nature of the lily B. elliptica interaction remains largely unknown. Here, comparative transcriptomic and metabolomic were used to investigate the defense responses of resistant ('Sorbonne') and susceptible ('Tresor') lily cultivars to B. elliptica infection at 24 hpi. In total, 1326 metabolites were identified in 'Sorbonne' and 'Tresor' after infection, including a large number of phenylpropanoids. Specifically, the accumulation of four phenylpropanes, including eriodictyol, hesperetin, ferulic acid, and sinapyl alcohol, was significantly upregulated in the B. elliptica-infected 'Sorbonne' compared with the infected 'Tresor', and these phenylpropanes could significantly inhibit B. elliptica growth. At the transcript level, higher expression levels of F3'M, COMT, and CAD led to a higher content of resistance-related phenylpropanes (eriodictyol, ferulic acid, and sinapyl alcohol) in 'Sorbonne' following B. elliptica infection. It can be assumed that these phenylpropanes cause the resistance difference between 'Sorbonne' and 'Tresor', and could be the potential marker metabolites for gray mold resistance in the lily. Further transcriptional regulatory network analysis suggested that members of the AP2/ERF, WRKY, Trihelix, and MADS-M-type families positively regulated the biosynthesis of resistance-related phenylpropanes. Additionally, the expression patterns of genes involved in phenylpropanoid biosynthesis were confirmed using qRT-PCR. Therefore, we speculate that the degree of gray mold resistance in the lily is closely related to the contents of phenylpropanes and the transcript levels of the genes in the phenylpropanoid biosynthesis pathway. Our results not only improve our understanding of the lily's resistance mechanisms against B. elliptica, but also facilitate the genetic improvement of lily cultivars with gray mold resistance.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Xinran Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Shanshan Hu
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Ann Abozeid
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Zongqi Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Junhao Jiang
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Ziming Ren
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Danqing Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongze Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Liqun Zheng
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Anhua Qin
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| |
Collapse
|
6
|
Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024; 912:148382. [PMID: 38493974 DOI: 10.1016/j.gene.2024.148382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.
Collapse
Affiliation(s)
- Chen Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Mengting Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiliang Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - He Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
7
|
Ling CQ, Liao HX, Wen JR, Nie HY, Zhang LY, Xu FR, Cheng YX, Dong X. Investigation of the Inhibitory Effects of Illicium verum Essential Oil Nanoemulsion on Fusarium proliferatum via Combined Transcriptomics and Metabolomics Analysis. Curr Microbiol 2024; 81:182. [PMID: 38769214 DOI: 10.1007/s00284-024-03724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.
Collapse
Affiliation(s)
- Cui-Qiong Ling
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Li-Yan Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, People's Republic of China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China.
| |
Collapse
|
8
|
Zhou T, Li Q, Huang X, Chen C. Analysis Transcriptome and Phytohormone Changes Associated with the Allelopathic Effects of Ginseng Hairy Roots Induced by Different-Polarity Ginsenoside Components. Molecules 2024; 29:1877. [PMID: 38675697 PMCID: PMC11053915 DOI: 10.3390/molecules29081877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of metabolomics and transcriptomics analysis techniques, combined with apparent morphology, physiological indexes, and cell vitality detection of the ginseng hairy roots, through which the molecular mechanism of correlation between polarity and allelopathic autotoxicity of ginsenosides were comprehensively studied. The hairy roots of ginseng presented more severe cell apoptosis under the stress of low-polarity ginsenoside components (ZG70). ZG70 exerted allelopathic autotoxicity by regulating the key enzyme genes of cis-zeatin (cZ) synthesis pathway, indole-3-acetic acid (IAA) synthesis pathway, and jasmonates (JAs) signaling transduction pathway. The common pathway for high-polarity ginsenoside components (ZG50) and ZG70 to induce the development of allelopathic autotoxicity was through the expression of key enzymes in the gibberellin (GA) signal transduction pathway, thereby inhibiting the growth of ginseng hairy roots. cZ, indole-3-acetamid (IAM), gibberellin A1 (GA1), and jasmonoyl-L-isoleucine (JA-ILE) were the key response factors in this process. It could be concluded that the polarity of ginsenoside components were negatively correlated with their allelopathic autotoxicity.
Collapse
Affiliation(s)
- Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- School of Medical Technology, Beihua University, Jilin 132013, China
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
9
|
Qi C, Zhang H, Chen W, Liu W. Curcumin: An innovative approach for postharvest control of Alternaria alternata induced black rot in cherry tomatoes. Fungal Biol 2024; 128:1691-1697. [PMID: 38575242 DOI: 10.1016/j.funbio.2024.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Curcumin, a natural bioactive compound derived from Curcuma longa, has been widely recognized for its antifungal properties. In this study, we investigated the effects of curcumin on the phytopathogenic fungus Alternaria alternata and its pathogenicity in cherry tomato fruit. The results demonstrated that curcumin treatment significantly inhibited mycelial growth and spore germination of A. alternata in a dose-dependent manner. Scanning electron microscopy revealed alterations in the morphology of A. alternata mycelia treated with curcumin. Furthermore, curcumin treatment led to an increase in malondialdehyde and hydrogen peroxide contents, indicating cell membrane damage in A. alternata. Moreover, curcumin exhibited a remarkable inhibitory effect on the incidence and lesion diameters of black rot caused by A. alternata in cherry tomato fruit. Gene expression analysis revealed upregulation of defense-related genes (POD, SOD, and CAT) in tomato fruit treated with curcumin. Additionally, curcumin treatment resulted in decreased activity of exocellular pathogenic enzymes (polygalacturonase, pectin lyase, and endo-1,4-β-d-glucanase) in A. alternata. Overall, our findings highlight the potential of curcumin as an effective antifungal agent against A. alternata, providing insights into its inhibitory mechanisms on mycelial growth, spore germination, and pathogenicity in cherry tomato fruit.
Collapse
Affiliation(s)
- Chenchen Qi
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, 830000, PR China.
| | - Haijing Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Weizhong Liu
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, 830000, PR China.
| |
Collapse
|
10
|
Wang Y, Chen B, Cheng C, Fu B, Qi M, Du H, Geng S, Zhang X. Comparative Transcriptomics Analysis Reveals the Differences in Transcription between Resistant and Susceptible Pepper ( Capsicum annuum L.) Varieties in Response to Anthracnose. PLANTS (BASEL, SWITZERLAND) 2024; 13:527. [PMID: 38498545 PMCID: PMC10892400 DOI: 10.3390/plants13040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
Pepper (Capsicum annuum L.) is a herbaceous plant species in the family Solanaceae. Capsicum anthracnose is caused by the genus Colletotrichum. spp., which decreases pepper production by about 50% each year due to anthracnose. In this study, we evaluated the resistance of red ripe fruits from 17 pepper varieties against anthracnose fungus Colletotrichum capsici. We assessed the size of the lesion diameter and conducted significance analysis to identify the resistant variety of B158 and susceptible variety of B161. We selected a resistant cultivar B158 and a susceptible cultivar B161 of pepper and used a transcription to investigate the molecular mechanisms underlying the plant's resistance to C. capsici, of which little is known. The inoculated fruit from these two varieties were used for the comparative transcription analysis, which revealed the anthracnose-induced differential transcription in the resistant and susceptible pepper samples. In the environment of an anthrax infection, we found that there were more differentially expressed genes in resistant varieties compared to susceptible varieties. Moreover, the response to stimulus and stress ability was stronger in the KANG. The transcription analysis revealed the activation of plant hormone signaling pathways, phenylpropanoid synthesis, and metabolic processes in the defense response of peppers against anthracnose. In addition, ARR-B, AP2-EREBP, bHLH, WRKY, and NAC are associated with disease resistance to anthracnose. Notably, WRKY and NAC were found to have a potentially positive regulatory role in the defense response against anthracnose. These findings contribute to a more comprehensive understanding of the resistance mechanisms of red pepper fruit to anthracnose infection, providing valuable molecular insights for further research on the resistance mechanisms and genetic regulations during this developmental stage of pepper.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Chunyuan Cheng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Bingkun Fu
- College of Horticultural, China Agricultural University, Beijing 100097, China; (B.F.); (M.Q.)
| | - Meixia Qi
- College of Horticultural, China Agricultural University, Beijing 100097, China; (B.F.); (M.Q.)
| | - Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| | - Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (B.C.); (C.C.); (H.D.); (S.G.)
| |
Collapse
|
11
|
Ruan R, Huang K, Luo H, Zhang C, Xi D, Pei J, Liu H. Occurrence and Characterization of Sclerotinia sclerotiorum Causing Fruit Rot on Sweet Cherry in Southern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:4165. [PMID: 38140492 PMCID: PMC10747181 DOI: 10.3390/plants12244165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Sweet cherry (Prunus avium L.) is widely planted in northern China due to its high economic value, and its cultivation has gradually spread south to warm regions. However, fruit rot, observed on the young fruits, poses a considerable threat to the development of sweet cherry. To determine the causal agent, morphological observation, molecular identification, and pathogenicity tests were performed on isolates obtained from diseased fruits. As a result, Sclerotinia sclerotiorum was identified as the pathogen. Pathogenicity tests on different sweet cherry cultivars indicated that 'Summit' was highly sensitive to S. sclerotiorum, whereas 'Hongmi' showed significant resistance. Besides sweet cherry, S. sclerotiorum could also infect other vegetable crops we tested, such as cowpea, soybean, tomato, and chili. Fungicide sensitivity and efficacy assays showed that both fludioxonil and pyraclostrobin can effectively inhibit the mycelial growth of S. sclerotiorum and decrease disease incidences on the young fruits of sweet cherry. Furthermore, genome sequencing resulted in a 37.8 Mb assembly of S. sclerotiorum strain ScSs1, showing abundant SNPs, InDels, and SVs with the genome of S. sclerotiorum reference strain 1980 UF-70. The above results provide an important basis for controlling the fruit rot of sweet cherry caused by S. sclerotiorum in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (R.R.)
| |
Collapse
|
12
|
Li H, Ding J, Liu C, Huang P, Yang Y, Jin Z, Qin W. Carvacrol Treatment Reduces Decay and Maintains the Postharvest Quality of Red Grape Fruits ( Vitis vinifera L.) Inoculated with Alternaria alternata. Foods 2023; 12:4305. [PMID: 38231758 DOI: 10.3390/foods12234305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we isolated and identified pathogenic fungi from the naturally occurring fruits of red grapes, studied their biological characteristics, screened fifteen essential oil components to find the best natural antibacterial agent with the strongest inhibitory effect, and then compared the incidence of postharvest diseases and storage potential of red grapes treated with two concentrations (0.5 EC50/EC50) of essential oil components (inoculated with pathogenic fungi) during storage for 12 d at room temperature. In our research, Alternaria alternata was the primary pathogenic fungus of red grapes. Specifically, red grapes became infected which caused diseases, regardless of whether they were inoculated with Alternaria alternata in an injured or uninjured state. Our findings demonstrated that the following conditions were ideal for Alternaria alternata mycelial development and spore germination: BSA medium, D-maltose, ammonium nitrate, 28 °C, pH 6, and exposure to light. For the best Alternaria alternata spore production, OA medium, mannitol, urea, 34 °C, pH 9, and dark conditions were advised. Furthermore, with an EC50 value of 36.71 μg/mL, carvacrol demonstrated the highest inhibitory impact on Alternaria alternata among the 15 components of essential oils. In the meantime, treatment with EC50 concentration of carvacrol was found to be more effective than 0.5 EC50 concentration for controlling Alternaria alternata-induced decay disease of red grapes. The fruits exhibited remarkable improvements in the activity of defense-related enzymes, preservation of the greatest hardness and total soluble solids content, reduction in membrane lipid peroxidation in the peel, and preservation of the structural integrity of peel cells. Consequently, carvacrol was able to prevent the Alternaria alternata infestation disease that affects red grapes, and its EC50 concentration produced the greatest outcomes.
Collapse
Affiliation(s)
- Hongying Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Ding
- College of Food Science, Sichuan Tourism University, Chengdu 610100, China
| | - Chunyan Liu
- Chengdu Kuafu Technology Co., Ltd., Chengdu 610100, China
| | - Peng Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
- Department of Quality Management and Inspection and Detection, Yibin University, Yibin 644000, China
| | - Yifan Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zilu Jin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
13
|
Han S, Xu X, Yuan H, Li S, Lin T, Liu Y, Li S, Zhu T. Integrated Transcriptome and Metabolome Analysis Reveals the Molecular Mechanism of Rust Resistance in Resistant (Youkang) and Susceptive (Tengjiao) Zanthoxylum armatum Cultivars. Int J Mol Sci 2023; 24:14761. [PMID: 37834210 PMCID: PMC10573174 DOI: 10.3390/ijms241914761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiu Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Huan Yuan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Zhang S, Miao W, Liu Y, Jiang J, Chen S, Chen F, Guan Z. Jasmonate signaling drives defense responses against Alternaria alternata in chrysanthemum. BMC Genomics 2023; 24:553. [PMID: 37723458 PMCID: PMC10507968 DOI: 10.1186/s12864-023-09671-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Black spot disease caused by the necrotrophic fungus Alternaria spp. is one of the most devastating diseases affecting Chrysanthemum morifolium. There is currently no effective way to prevent chrysanthemum black spot. RESULTS We revealed that pre-treatment of chrysanthemum leaves with the methy jasmonate (MeJA) significantly reduces their susceptibility to Alternaria alternata. To understand how MeJA treatment induces resistance, we monitored the dynamics of metabolites and the transcriptome in leaves after MeJA treatment following A. alternata infection. JA signaling affected the resistance of plants to pathogens through cell wall modification, Ca2+ regulation, reactive oxygen species (ROS) regulation, mitogen-activated protein kinase cascade and hormonal signaling processes, and the accumulation of anti-fungal and anti-oxidant metabolites. Furthermore, the expression of genes associated with these functions was verified by reverse transcription quantitative PCR and transgenic assays. CONCLUSION Our findings indicate that MeJA pre-treatment could be a potential orchestrator of a broad-spectrum defense response that may help establish an ecologically friendly pest control strategy and offer a promising way of priming plants to induce defense responses against A. alternata.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weihao Miao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|