1
|
Yan T, Song Z, Yu B, Li Q, Wang D. Analysis of rabbiteye blueberry metabolomes and transcriptomes reveals mechanisms underlying potassium-induced anthocyanin production. Sci Rep 2025; 15:7573. [PMID: 40038339 DOI: 10.1038/s41598-025-90060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Environmental factors play an important role in anthocyanin biosynthesis, and potassium, an essential nutrient for blueberry growth, can act as an enzyme activator. However, few reports exist on the transcriptional and anthocyanin metabolic changes in blueberries regulated by potassium. The results indicated that potassium treatment significantly increased the contents of malvidin, petunidin, and delphinidin in blueberry fruits and accelerated early color development, particularly favoring the accumulation of darker pigments such as malvidin, petunidin, and delphinidin when applied at the young fruit stage. Transcriptome analysis identified 102 glucose metabolism-related genes and 12 differential potassium transport genes potentially involved in potassium-mediated anthocyanin synthesis and accumulation, with AKT1 and KUP potassium transporters being upregulated under potassium fertilization. In the anthocyanin biosynthesis pathway, 13 genes, including UFGT, F3H, CHI, HCT, C12RT1, DFR, and F3'5'H, were closely linked to flavonoid and anthocyanin metabolite synthesis regulated by potassium. Furthermore, potassium treatment markedly enhanced the activities of key enzymes, F3H, F3'5'H, and UFGT, in the anthocyanin synthesis pathway of blueberry fruits. Overall, these findings elucidate the influence of potassium application timing on anthocyanin synthesis and provide valuable insights into the molecular mechanisms governing anthocyanin biosynthesis in blueberries.
Collapse
Affiliation(s)
- Ting Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zejun Song
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Boping Yu
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qian Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Jin R, Yan M, Li G, Liu M, Zhao P, Zhang Z, Zhang Q, Zhu X, Wang J, Yu Y, Zhang A, Yang J, Tang Z. Comparative physiological and transcriptome analysis between potassium-deficiency tolerant and sensitive sweetpotato genotypes in response to potassium-deficiency stress. BMC Genomics 2024; 25:61. [PMID: 38225545 PMCID: PMC10789036 DOI: 10.1186/s12864-023-09939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Sweetpotato is a typical ''potassium (K+) favoring'' food crop, which root differentiation process needs a large supply of potassium fertilizer and determine the final root yield. To further understand the regulatory network of the response to low potassium stress, here we analyze physiological and biochemical characteristics, and investigated root transcriptional changes in two sweetpotato genotypes, namely, - K tolerant "Xu32" and - K susceptible"NZ1". RESULT We found Xu32 had the higher capability of K+ absorption than NZ1 with better growth performance, higher net photosynthetic rate and higher chlorophyll contents under low potassium stress, and identified 889 differentially expressed genes (DEGs) in Xu32, 634 DEGs in NZ1, 256 common DEGs in both Xu32 and NZ1. The Gene Ontology (GO) term in molecular function enrichment analysis revealed that the DEGs under low K+ stress are predominately involved in catalytic activity, binding, transporter activity and antioxidant activity. Moreover, the more numbers of identified DEGs in Xu32 than that in NZ1 responded to K+-deficiency belong to the process of photosynthesis, carbohydrate metabolism, ion transport, hormone signaling, stress-related and antioxidant system may result in different ability to K+-deficiency tolerance. The unique genes in Xu32 may make a great contribution to enhance low K+ tolerance, and provide useful information for the molecular regulation mechanism of K+-deficiency tolerance in sweetpotato. CONCLUSIONS The common and distinct expression pattern between the two sweetpotato genotypes illuminate a complex mechanism response to low potassium exist in sweetpotato. The study provides some candidate genes, which can be used in sweetpotato breeding program for improving low potassium stress tolerance.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
- sishui lifeng food products Co., Ltd, Jining, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Guanghua Li
- sishui lifeng food products Co., Ltd, Jining, China
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
| | - Zhe Zhang
- Sishui County Agriculture and Rural Bureau, Jining, China
| | - Qiangqiang Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
| | - Xiaoya Zhu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
| | - Jing Wang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
| | - Yongchao Yu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, Jiangsu, China.
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, National Agricultural Experimental Station for Soil Quality, Xuzhou, Jiangsu, China.
| |
Collapse
|