1
|
Metwally RA, Taha MA, El-Moaty NMA, Abdelhameed RE. Attenuation of Zucchini mosaic virus disease in cucumber plants by mycorrhizal symbiosis. PLANT CELL REPORTS 2024; 43:54. [PMID: 38315215 PMCID: PMC10844420 DOI: 10.1007/s00299-023-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Taha
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nada M Abd El-Moaty
- Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Boyno G, Demir S, Rezaee Danesh Y, Durak ED, Çevik R, Farda B, Djebaili R, Pellegrini M. A New Technique for the Extraction of Arbuscular Mycorrhizae Fungal Spores from Rhizosphere. J Fungi (Basel) 2023; 9:845. [PMID: 37623616 PMCID: PMC10455966 DOI: 10.3390/jof9080845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Monitoring the dynamics of the spore bank of arbuscular mycorrhizal fungi (AMF) is essential for the sustainable management and protection of agroecosystems. The most common method for extracting AMF spores from soil is the wet-sieving technique (WST). However, this method has many disadvantages. In this study, we modified the WST using new approaches: the ultrasound wet-sieving technique (UWST) and the ultrasound centrifuge technique (UCT). We enumerated and compared the numbers and quality of spores obtained from WST, UWST, and UCT to validate the new modified techniques. We extracted AMF spores from the rhizospheres of different plants, including wheat (Triticum aestivum L.), bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), pepper (Piper nigrum L.), parsley (Petroselinum crispum Mill.), and turfgrass (Lolium perenne L.) collected from the Van Lake basin, Turkey. The highest and lowest AMF spore numbers were observed in wheat and turfgrass rhizospheres. The UCT allowed for the extraction of the highest number of spores from all rhizospheres, followed by the UWST and WST. The UWST and WST allowed for the extraction of similar spore numbers from wheat, pepper, parsley, and turfgrass rhizospheres. Beyond the high extracted spore number, UCT was shown to be a fast and low-material-consuming approach. These findings demonstrate that the UCT can be used to efficiently extract AMF spores in future research.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye; (G.B.); (E.D.D.); (R.Ç.)
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye; (G.B.); (E.D.D.); (R.Ç.)
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye; (G.B.); (E.D.D.); (R.Ç.)
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Emre Demirer Durak
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye; (G.B.); (E.D.D.); (R.Ç.)
| | - Rojbin Çevik
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye; (G.B.); (E.D.D.); (R.Ç.)
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Coppito, 67100 L’Aquila, Italy; (B.F.); (R.D.)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Coppito, 67100 L’Aquila, Italy; (B.F.); (R.D.)
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Coppito, 67100 L’Aquila, Italy; (B.F.); (R.D.)
| |
Collapse
|