1
|
Akter MB, Li J, Lv X, Saand MA, Mehvish A, Sayed MA, Yang Y. Identification of key genes and signaling pathways in coconut (Cocos nucifera L.) under drought stress via comparative transcriptome analysis. BMC PLANT BIOLOGY 2025; 25:510. [PMID: 40259217 PMCID: PMC12012947 DOI: 10.1186/s12870-025-06554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Drought stress has become a pervasive environmental challenge, significantly impacting all stages of plant growth and development under changing climatic conditions worldwide. In coconut, drought stress critically impairs reproductive development, notably reducing the quality of pollen and gametes during fertilization. Therefore, the seedlings of the aromatic coconut variety were subjected to drought stress for varying durations: control (no stress), 7 days, 14 days, and 21 days to find the potential molecular mechanisms and genes related to coconut drought tolerance through transcriptomic analysis. Our study may provide a theoretical basis for investigations into drought stress tolerance that will be useful for further coconut improvement. RESULTS We assessed antioxidant enzyme activity and conducted comparative transcriptome analyses of aromatic coconut under different drought conditions (7, 14, and 21 days). Our findings revealed significant rises in superoxide dismutase (SOD), peroxidase (POD) activities and proline (Pro) content across all drought periods compared to control plants, suggesting that these enzymes play a crucial role in the adaptive response of coconuts to drought stress. RNA-seq data identified 280, 729, and 6,698 differentially expressed genes (DEGs) at 7, 14, and 21 days, respectively. Principal Component Analysis (PCA) revealed that coconut samples were scattered and separated across different treatment points, suggesting the presence of differentially expressed genes (DEGs), particularly in the 21 day drought treatment (GH21d). KEGG pathway analysis indicated that DEGs were significantly enriched in pathways related to plant-pathogen interaction, plant hormone signaling, and mitogen-activated protein kinase (MAPK) signaling. Functional annotation of these DEGs revealed key candidate genes involved in several hormone signaling pathways, including abscisic acid (ABA), jasmonates (JA), auxin (AUX), brassinosteroids (BR), ethylene (ET), and gibberellin (GA), along with MAPK pathway which may regulate plant adaptation to drought stress through processes such as plant growth, cell division, stomatal closure, root growth, and stomatal development. This study provides valuable insights into the genetic and molecular basis of drought tolerance in coconuts, paving the way for the improvement of drought-tolerant coconut varieties. CONCLUSIONS Under drought stress, the expression of genes related to plant growth, stomatal closure, cell division, stress response, adaptation, and stomatal development appears to play a critical role in drought tolerance in coconut. Our results revealed that multiple genes may contribute to the drought tolerance mechanism in coconut through various hormone signaling pathways, including ABA, JA, auxin, BR, GA, and ethylene. These findings offer new insights into the key molecular mechanisms governing drought tolerance in aromatic coconut. Furthermore, the candidate genes and pathways identified in this study could be valuable for developing strategies to enhance drought tolerance in coconut plants. CLINICAL TRIAL NUMBER Not Applicable.
Collapse
Affiliation(s)
- Md Babul Akter
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Xiang Lv
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Mumtaz Ali Saand
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Ambreen Mehvish
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Md Abu Sayed
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China.
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China.
| |
Collapse
|
2
|
Zhang Z, Zhang T, Lu L, Qiu S, Huang Z, Wang Y, Chen X, Li L, Sun Y, Zhang R, Chen P, Song Y, Zeng R. Synergistic interaction between brassinosteroid and jasmonate pathways in rice response to cadmium toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176369. [PMID: 39299342 DOI: 10.1016/j.scitotenv.2024.176369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Brassinosteroids (BRs) and jasmonic acid (JA) are known to be involved in regulating plant responses to cadmium (Cd) stress. However, their specific roles and interaction in this process remain unclear. In this study, we discovered that exogenous BR alleviated Cd-mediated growth inhibition of rice seedlings. Enhanced Cd tolerance was also observed in m107, a BR-overproduction mutant. Phenotypic analysis of genetic materials involved in BR signaling confirmed the positive role of BR in regulating rice response to Cd toxicity. OsDLT, a key component in the BR signaling pathway, was found to be crucial for BR-mediated Cd tolerance. Further analysis demonstrated that activation of the BR pathway reduced the accumulation of Cd and reactive oxygen species (ROS) by modulating the expression of genes associated with Cd transport and ROS scavenging. Interestingly, transcriptome analysis indicated that the JA pathway was enriched in OsDLT-regulated differently expressed genes (DEGs). Gene expression and hormone assays showed that BR promoted the expression of JA pathway genes and JA levels in plants. Moreover, BR-induced tolerance was compromised in the JA signaling-deficient mutant osmyc2, suggesting that BR-mediated Cd resistance depends on the activation of the JA signaling pathway. Overall, our study revealed the synergistic interaction between BR and JA pathways in rice response to Cd stress, providing insights into the complex hormonal interplay in plant tolerance to heavy metals.
Collapse
Affiliation(s)
- Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tingting Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Shunjiao Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zecong Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yuan Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Long Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongjun Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Pinghua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou 350002, PR China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
3
|
Fontanet‐Manzaneque JB, Laibach N, Herrero‐García I, Coleto‐Alcudia V, Blasco‐Escámez D, Zhang C, Orduña L, Alseekh S, Miller S, Bjarnholt N, Fernie AR, Matus JT, Caño‐Delgado AI. Untargeted mutagenesis of brassinosteroid receptor SbBRI1 confers drought tolerance by altering phenylpropanoid metabolism in Sorghum bicolor. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3406-3423. [PMID: 39325724 PMCID: PMC11606431 DOI: 10.1111/pbi.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Drought is a critical issue in modern agriculture; therefore, there is a need to create crops with drought resilience. The complexity of plant responses to abiotic stresses, particularly in the field of brassinosteroid (BR) signalling, has been the subject of extensive research. In this study, we unveil compelling insights indicating that the BRASSINOSTEROID-INSENSITIVE 1 (BRI1) receptor in Arabidopsis and Sorghum plays a critical role as a negative regulator of drought responses. Introducing untargeted mutation in the sorghum BRI1 receptor (SbBRI1) effectively enhances the plant's ability to withstand osmotic and drought stress. Through DNA Affinity Purification sequencing (DAP-seq), we show that the sorghum BRI1-EMS-SUPPRESSOR 1 (SbBES1) transcription factor, a downstream player of the BR signalling, binds to a conserved G-box binding motif, and it is responsible for regulating BR homeostasis, as its Arabidopsis ortholog AtBES1. We further characterized the drought tolerance of sorghum bri1 mutants and decipher SbBES1-mediated regulation of phenylpropanoid pathway. Our findings suggest that SbBRI1 signalling serves a dual purpose: under normal conditions, it regulates lignin biosynthesis by SbBES1, but during drought conditions, BES1 becomes less active, allowing the activation of the flavonoid pathway. This adaptive shift improves the photosynthetic rate and photoprotection, reinforcing crop adaptation to drought.
Collapse
Affiliation(s)
- Juan B. Fontanet‐Manzaneque
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Natalie Laibach
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBBarcelonaSpain
- Present address:
Rhine‐Waal University of Applied Science, University of Copenhagen, Life Science FacultyKleveDenmark
| | - Iván Herrero‐García
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Veredas Coleto‐Alcudia
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - David Blasco‐Escámez
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBBarcelonaSpain
- Present address:
VIB‐UGent Center for Plant Systems BiologyGhenteBelgium
| | - Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Sara Miller
- Copenhagen Plant Science Center, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Nanna Bjarnholt
- Copenhagen Plant Science Center, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Ana I. Caño‐Delgado
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| |
Collapse
|
4
|
Zhao Y, Han Q, Zhang D. Recent Advances in the Crosstalk between Brassinosteroids and Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2024; 65:1552-1567. [PMID: 38578169 DOI: 10.1093/pcp/pcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Due to their sessile lifestyle, plants need to optimize their growth in order to adapt to ever-changing environments. Plants receive stimuli from the environment and convert them into cellular responses. Brassinosteroids (BRs), as growth-promoting steroid hormones, play a significant role in the tradeoff between growth and environmental responses. Here, we provide a comprehensive summary for understanding the crosstalk between BR and various environmental stresses, including water availability, temperature fluctuations, salinization, nutrient deficiencies and diseases. We also highlight the bottlenecks that need to be addressed in future studies. Ultimately, we suppose to improve plant environmental adaptability and crop yield by excavating natural BR mutants or modifying BR signaling and its targets.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Xiong J, Huang B, Peng D, Shen Q, Wu D, Zhang G. JAZ2 Negatively Regulates Drought Tolerance in Barley by Modulating PLT2 Expression. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323024 DOI: 10.1111/pce.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Drought is an important abiotic factor constricting crop production globally. Although the roles of JAZ proteins in regulating jasmonic acid signalling and plant responses to environmental stress are well documented, their specific functions and underlying mechanisms remain little known. In this study, JAZ proteins in barley were thoroughly analyzed, revealing a total of 11 members classified into three phylogenetic subgroups. HvJAZ2, based on its distinct expression patterns, is considered a key candidate gene for regulating drought tolerance in barley. Using the HvJAZ2 knockout mutants, we revealed that the gene negatively regulates drought tolerance by inhibiting barley root growth. Notably, the jaz2 mutants upregulated the expression of root development genes, including SHR1, PLT1, PLT2 and PLT6. plt2 and plt1/plt2 mutants exhibited suppressed root development and reduced drought tolerance. Analysis of interactions between HvJAZ2 and other proteins showed that HvJAZ2 does not directly interact with HvPLT1/2/6, but interacts with some other proteins. BIFC and LCA assays further confirmed the nuclear interaction between HvJAZ2 and HvMYC2. Y1H and Dual-Luciferase experiments demonstrated that HvMYC2 can bind to and activate the HvPLT2 promoter. In summary, HvJAZ2 negatively regulates root development and drought tolerance in barley by suppressing HvPLT2 expression through interacting with HvMYC2.
Collapse
Affiliation(s)
- Jiangyan Xiong
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Binbin Huang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Di Peng
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Qiufang Shen
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - DeZhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P.R. China
| |
Collapse
|
6
|
Han B, Zhang W, Wang F, Yue P, Liu Z, Yue D, Zhang B, Ma Y, Lin Z, Yu Y, Wang Y, Zhang X, Yang X. Dissecting the Superior Drivers for the Simultaneous Improvement of Fiber Quality and Yield Under Drought Stress Via Genome-Wide Artificial Introgressions of Gossypium barbadense into Gossypium hirsutum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400445. [PMID: 38984458 PMCID: PMC11425955 DOI: 10.1002/advs.202400445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Indexed: 07/11/2024]
Abstract
Global water scarcity and extreme weather intensify drought stress, significantly reducing cotton yield and quality worldwide. Drought treatments are conducted using a population of chromosome segment substitution lines generated from E22 (G. hirsutum) and 3-79 (G. barbadense) as parental lines either show superior yields or fiber quality under both control and drought conditions. Fourteen datasets, covering 4 yields and 4 quality traits, are compiled and assessed for drought resistance using the drought resistance coefficient (DRC) and membership function value of drought resistance (MFVD). Genome-wide association studies, linkage analysis, and bulked segregant analysis are combined to analyze the DR-related QTL. A total of 121 significant QTL are identified by DRC and MFVD of the 8 traits. CRISPR/Cas9 and virus-induced gene silencing techniques verified DRR1 and DRT1 as pivotal genes in regulating drought resistant of cotton, with hap3-79 exhibiting greater drought resistance than hapE22 concerning DRR1 and DRT1. Moreover, 14 markers with superior yield and fiber quality are selected for drought treatment. This study offers valuable insights into yield and fiber quality variations between G. hirsutum and G. barbadense amid drought, providing crucial theoretical and technological backing for developing cotton varieties resilient to drought, with high yield and superior fiber quality.
Collapse
Affiliation(s)
- Bei Han
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Wenhao Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Pengkai Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Zhilin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yu Yu
- Cotton InstituteXinjiang Academy of Agriculture and Reclamation ScienceShihezi832000China
| | - Yanqin Wang
- College of Life SciencesTarim UniversityAlar843300China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
7
|
Zhou YL, You XY, Wang XY, Cui LH, Jiang ZH, Zhang KP. Exogenous 24-Epibrassinolide Enhanced Drought Tolerance and Promoted BRASSINOSTEROID-INSENSITIVE2 Expression of Quinoa. PLANTS (BASEL, SWITZERLAND) 2024; 13:873. [PMID: 38592849 PMCID: PMC10974127 DOI: 10.3390/plants13060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Brassinosteroids (BRs) are involved in the regulation of biotic and abiotic stresses in plants. The molecular mechanisms of BRs that alleviate the drought stress in quinoa have rarely been reported. Here, quinoa seedlings were treated with 24-epibrassinolide (EBR) and we transiently transferred CqBIN2 to the quinoa seedlings' leaves using VIGS technology to analyze the molecular mechanism of the BR mitigation drought stress. The results showed that EBR treatment significantly increased the root growth parameters, the antioxidant enzyme activities, and the osmolyte content, resulting in a decrease in the H2O2, O2∙-, and malondialdehyde content in quinoa. A transcriptome analysis identified 8124, 2761, and 5448 differentially expressed genes (DEGs) among CK and Drought, CK and EBR + Drought, and Drought and EBR + Drought groups. WGCNA divided these DEGs into 19 modules in which these characterized genes collectively contributed significantly to drought stress. In addition, the EBR application also up-regulated the transcript levels of CqBIN2 and proline biosynthesis genes. Silenced CqBIN2 by VIGS could reduce the drought tolerance, survival rate, and proline content in quinoa seedlings. These findings not only revealed that exogenous BRs enhance drought tolerance, but also provided insight into the novel functions of CqBIN2 involved in regulating drought tolerance in plants.
Collapse
Affiliation(s)
- Ya-Li Zhou
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.-L.Z.); (X.-Y.Y.); (Z.-H.J.); (K.-P.Z.)
| | - Xin-Yong You
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.-L.Z.); (X.-Y.Y.); (Z.-H.J.); (K.-P.Z.)
| | - Xing-Yun Wang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.-L.Z.); (X.-Y.Y.); (Z.-H.J.); (K.-P.Z.)
| | - Li-Hua Cui
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China;
| | - Zhi-Hui Jiang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.-L.Z.); (X.-Y.Y.); (Z.-H.J.); (K.-P.Z.)
| | - Kun-Peng Zhang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (Y.-L.Z.); (X.-Y.Y.); (Z.-H.J.); (K.-P.Z.)
| |
Collapse
|
8
|
Liu H, Wu Z, Bao M, Gao F, Yang W, Abou-Elwafa SF, Liu Z, Ren Z, Zhu Y, Ku L, Su H, Chong L, Chen Y. ZmC2H2-149 negatively regulates drought tolerance by repressing ZmHSD1 in maize. PLANT, CELL & ENVIRONMENT 2024; 47:885-899. [PMID: 38164019 DOI: 10.1111/pce.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Drought is a major abiotic stress that limits maize production worldwide. Therefore, it is of great importance to improve drought tolerance in crop plants for sustainable agriculture. In this study, we examined the roles of Cys2 /His2 zinc-finger-proteins (C2H2-ZFPs) in maize's drought tolerance as C2H2-ZFPs have been implicated for plant stress tolerance. By subjecting 150 Ac/Ds mutant lines to drought stress, we successfully identified a Ds-insertion mutant, zmc2h2-149, which shows increased tolerance to drought stress. Overexpression of ZmC2H2-149 in maize led to a decrease in both drought tolerance and crop yield. DAP-Seq, RNA-Seq, Y1H and LUC assays additionally showed that ZmC2H2-149 directly suppresses the expression of a positive drought tolerance regulator, ZmHSD1 (hydroxysteroid dehydrogenase 1). Consistently, the zmhsd1 mutants exhibited decreased drought tolerance and grain yield under water deficit conditions compared to their respective wild-type plants. Our findings thus demonstrated that ZmC2H2-149 can regulate ZmHSD1 for drought stress tolerance in maize, offering valuable theoretical and genetic resources for maize breeding programmes that aim for improving drought tolerance.
Collapse
Affiliation(s)
- Huafeng Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhendong Wu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Miaomiao Bao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fengran Gao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | | | - Zhixue Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Leelyn Chong
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Ding Z, Yao Y, Yao K, Hou X, Zhang Z, Huang Y, Wang C, Liao W. SlSERK3B Promotes Tomato Seedling Growth and Development by Regulating Photosynthetic Capacity. Int J Mol Sci 2024; 25:1336. [PMID: 38279340 PMCID: PMC10816166 DOI: 10.3390/ijms25021336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated steroids for plant growth and development, regulating numerous physiological and biochemical processes and participating in multi-pathway signaling in plants. 24-Epibrassinolide (EBR) is the most commonly used BR for the investigation of the effects of exogenous steroidal phytohormones on plant physiology. Although SlSERK3B is considered a gene involved in the brassinosteroid (BR) signaling pathway, its specific role in plant growth and development has not been reported in detail. In this study, tomato (Solanum lycopersicum L.) seedlings treated with 0.05 μmol L-1 EBR showed a significant increase in plant height, stem diameter, and fresh weight, demonstrating that BR promotes the growth of tomato seedlings. EBR treatment increased the expression of the BR receptor gene SlBRI1, the co-receptor gene SlSERK3A and its homologs SlSERK3B, and SlBZR1. The SlSERK3B gene was silenced by TRV-mediated virus-induced gene silencing (VIGS) technology. The results showed that both brassinolide (BL) content and BR synthesis genes were significantly up-regulated in TRV-SlSERK3B-infected seedlings compared to the control seedlings. In contrast, plant height, stem diameter, fresh weight, leaf area and total root length were significantly reduced in silenced plants. These results suggest that silencing SlSERK3B may affect BR synthesis and signaling, thereby affecting the growth of tomato seedlings. Furthermore, the photosynthetic capacity of TRV-SlSERK3B-infected tomato seedlings was reduced, accompanied by decreased photosynthetic pigment content chlorophyll fluorescence, and photosynthesis parameters. The expression levels of chlorophyll-degrading genes were significantly up-regulated, and carotenoid-synthesising genes were significantly down-regulated in TRV-SlSERK3B-infected seedlings. In conclusion, silencing of SlSERK3B inhibited BR signaling and reduced photosynthesis in tomato seedlings, and this correlation suggests that SlSERK3B may be related to BR signaling and photosynthesis enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (Z.D.); (Y.Y.); (K.Y.); (X.H.); (Z.Z.); (Y.H.); (C.W.)
| |
Collapse
|
10
|
Liu Y, Zhang D, Xu Y, Yi Y. How the xerophytic moss Pogonatum inflexum tolerates desiccation. PLANT CELL REPORTS 2024; 43:39. [PMID: 38231303 DOI: 10.1007/s00299-023-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
KEY MESSAGE Desiccation-tolerant process of xerophytic moss Pogonatum inflexum were identified through de novo transcriptome assembly , morphological structure and physiology analysis. Pogonatum inflexum (Lindb.) Lac. is a typical xerophytic moss and have been widely used in gardening and micro-landscape. However, the mechanisms underlying desiccation tolerance are still unclear. In this study, morphological, physiological and trancriptomic analyses of P. inflexum to tolerate desiccation were carried out. Our results indicate that P. inflexum increase osmoregulation substances, shut down photosynthesis, and alter the content of membrane lipid fatty acids in response to desiccation, and the genes involved in these biological processes were changes in expression after desiccation. 12 h is the threshold for P. inflexum to tolerate desiccation and its photosynthesis has not been damaged within 12 h of desiccation and can still recover after rewater. We also proved that the gametocyte of P. inflexum has the ability to absorb and transport water, and contains lignin-synthesis genes in response to tolerant desiccation. Our findings not only explain the mechanisms of P. inflexum during desiccation, but also provide some attractive candidate genes for genetic breeding.
Collapse
Affiliation(s)
- Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Daqing Zhang
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yongmei Xu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yanjun Yi
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|