1
|
Cao Y, Hong J, Wang H, Lin M, Cai Y, Liao L, Li X, Han Y. Beyond glycolysis: multifunctional roles of glyceraldehyde-3-phosphate dehydrogenases in plants. HORTICULTURE RESEARCH 2025; 12:uhaf070. [PMID: 40303431 PMCID: PMC12038228 DOI: 10.1093/hr/uhaf070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a highly conserved enzyme in the glycolytic pathway, also acts as a moonlighting protein, performing various functions beyond its classical role in glycolysis, such as regulating gene expression, participating in cell signal transduction, and responding to environmental stress. By interacting with various signaling molecules, GAPDH plays a regulatory role in hormone signaling pathways, influencing plant growth and development. Functional plasticity in GAPDH is modulated mainly through redox-driven post-translational modifications, which alter the enzyme's catalytic activity and influence its subcellular distribution. This review explores the diverse functionalities of GAPDHs in plants, highlighting their significance in plant metabolic processes and stress adaptation.
Collapse
Affiliation(s)
- Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jiayi Hong
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Han Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230000, China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330224 Jiangxi, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102209, China
- Tobacco Chemistry Research Institute of Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
2
|
Kim JY, Lee YJ, Lee HM, Jung YS, Go J, Lee HJ, Nam KS, Kim JH, Kang KK, Jung YJ. A Knockout of the OsGAPDHC6 Gene Encoding a Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Reacts Sensitively to Abiotic Stress in Rice. Genes (Basel) 2025; 16:436. [PMID: 40282396 PMCID: PMC12027454 DOI: 10.3390/genes16040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme, encoded by OsGAPDHC6, plays a crucial role in glycolysis while participating in various physiological and stress response pathways. METHODS In this study, the expression levels of the OsGAPDHC1 and OsGAPDHC6 genes were investigated over time by treating various abiotic stresses (ABA, PEG, NaCl, heat, and cold) in rice seedlings. RESULTS As a result, the expression levels of both genes in the ABA-treated group increased continuously for 0-6 h and then de-creased sharply from 12 h onwards. The mutational induction of the GAPDHC6 gene by the CRISPR/Cas9 system generated a stop codon through a 1 bp insertion into protein production. The knockout (KO) lines showed differences in seed length, seed width, and seed thickness compared to wild-type (WT) varieties. In addition, KO lines showed a lower germination rate, germination ability, and germination index of seeds under salt treatment compared to WT, and leaf damage due to 3,3'-diaminobenzidine (DAB) staining was very high due to malondialdehyde (MDA) accumulation. The KO line was lower regarding the expression level of stress-related genes compared to WT. CONCLUSIONS Therefore, the OsGAPDHC6 gene is evaluated as a gene that can increase salt resistance in rice as it actively responds to salt stress in the early stages of growth, occurring from seed germination to just before the tilling stage.
Collapse
Affiliation(s)
- Jin-Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Ye-Ji Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Hye-Mi Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Yoo-Seob Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Jiyun Go
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyo-Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Ki-Sun Nam
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Jong-Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yu-Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
3
|
Lim H, Denison MIJ, Natarajan S, Lee K, Oh C, Park D. GAPDH Gene Family in Populus deltoides: Genome-Wide Identification, Structural Analysis, and Expression Analysis Under Drought Stress. Int J Mol Sci 2025; 26:335. [PMID: 39796191 PMCID: PMC11720025 DOI: 10.3390/ijms26010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown. Identification and systematic analysis of the GAPDH family in Populus deltoides (P. deltoides) have not been performed. Bioinformatics methods were used to analyze the physicochemical characteristics, structural characteristics, phylogenetic relationships, gene structure, motif analysis, and expression of GAPDH gene family members in P. deltoides. We identified 12 GAPDH members in P. deltoides. Five types of PdGAPDH were identified: GAPA, GAPB, GAPC1, GAPC2, and GAPCp. PdGAPDH genes were differentially expressed in leaves, stems, and roots of 1-year-old poplar seedlings. PdGAPDH gene transcripts showed that PdGAPDH2 and PdGAPDH4 were highly expressed in the leaves. In the roots, seven genes-PdGAPDH01, PdGAPDH05, PdGAPDH06, PdGAPDH07, PdGAPDH08, PdGAPDH09, and PdGAPDH12-showed significantly high expression levels. PdGAPDH02, PdGAPDH03, PdGAPDH04, and PdGAPDH11 showed decreased expression under drought conditions and recovered after re-watering. These results lay the foundation for further studies on the drought stress mechanisms of P. deltoides.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | | | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | - Danbe Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| |
Collapse
|
4
|
Herrera-Isidron L, Uribe-Lopez B, Barraza A, Cabrera-Ponce JL, Valencia-Lozano E. Analysis of Stress Response Genes in Microtuberization of Potato Solanum tuberosum L.: Contributions to Osmotic and Combined Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2996. [PMID: 39519915 PMCID: PMC11548447 DOI: 10.3390/plants13212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Wild Solanum species have contributed many introgressed genes during domestication into current cultivated potatoes, enhancing their biotic and abiotic stress resistance and facilitating global expansion. Abiotic stress negatively impacts potato physiology and productivity. Understanding the molecular mechanisms regulating tuber development may help solve this global problem. We made a transcriptomic analysis of potato microtuberization under darkness, cytokinins, and osmotic stress conditions. A protein-protein interaction (PPI) network analysis identified 404 genes with high confidence. These genes were involved in important processes like oxidative stress, carbon metabolism, sterol biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, and nucleosome assembly. From this network, we selected nine ancestral genes along with eight additional stress-related genes. We used qPCR to analyze the expression of the selected genes under osmotic, heat-osmotic, cold-osmotic, salt-osmotic, and combined-stress conditions. The principal component analysis (PCA) revealed that 60.61% of the genes analyzed were associated with osmotic, cold-osmotic, and heat-osmotic stress. Seven out of ten introgression/domestication genes showed the highest variance in the analysis. The genes H3.2 and GAPCP1 were involved in osmotic, cold-osmotic, and heat-osmotic stress. Under combined-all stress, TPI and RPL4 were significant, while in salt-osmotic stress conditions, ENO1, HSP70-8, and PER were significant. This indicates the importance of ancestral genes for potato survival during evolution. The targeted manipulation of these genes could improve combined-stress tolerance in potatoes, providing a genetic basis for enhancing crop resilience.
Collapse
Affiliation(s)
- Lisset Herrera-Isidron
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Braulio Uribe-Lopez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Aaron Barraza
- CONAHCYT-Centro de Investigaciones Biológicas del Noreste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico;
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
5
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
6
|
Wu C, Zhang J, Chen M, Liu J, Tang Y. Characterization of a Nicotiana tabacum phytochelatin synthase 1 and its response to cadmium stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1418762. [PMID: 39280946 PMCID: PMC11393743 DOI: 10.3389/fpls.2024.1418762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Phytochelatin synthase (PCS) is a critical enzyme involved in heavy metal detoxification in organisms. In this study, we aim to comprehensively investigate the molecular and functional characteristics of the PCS1 gene from Nicotiana tabacum by examining its enzymatic activity, tissue-specific expression pattern, Cd-induced expression, as well as the impact on Cd tolerance and accumulation. The results demonstrated that the amino acid sequence of NtPCS1 shared a high similarity in its N-terminal region with PCS from other species. The enzymatic activity of NtPCS1 was found to be enhanced in the order Ag2+ > Cd2+ > Cu2+ > Pb2+ > Hg2+ > Fe2+ > Zn2+. In addition, RT-PCR data indicated that NtPCS1 gene is constitutively expressed, with the highest expression observed in flowers, and that its transcript levels are up-regulated by CdCl2. When tobacco overexpressing NtPCS1 (PCS1 lines) were grown under CdCl2 stress, they produced more phytochelatins (PCs) than WT plants, but this did not result in increased Cd accumulation. However, in a root growth assay, the PCS1 lines exhibited hypersensitivity to Cd. The overexpression of NtPCS1 itself does not appear to be the primary cause of this heightened sensitivity to Cd, as the Arabidopsis thaliana Atpcs1 mutant overexpressing NtPCS1 actually exhibited enhanced tolerance to Cd. Furthermore, the addition of exogenous glutathione (GSH) progressively reduced the Cd hypersensitivity of the PCS1 lines, with the hypersensitivity even being completely eliminated. Surprisingly, the application of exogenous GSH led to a remarkably enhanced Cd accumulation in the PCS1 lines. This study enriches our understanding of the molecular function of the NtPCS1 gene and suggests a promising avenue for Cd tolerance through the heterologous expression of PCS genes in different species.
Collapse
Affiliation(s)
- Chanjuan Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jie Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mei Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jikai Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
7
|
Lim H, Denison MIJ, Lee K, Natarajan S, Kim TL, Oh C. Genome-Wide Characterization of Glyceraldehyde-3-Phosphate Dehydrogenase Genes and Their Expression Profile under Drought Stress in Quercus rubra. PLANTS (BASEL, SWITZERLAND) 2024; 13:2312. [PMID: 39204748 PMCID: PMC11360533 DOI: 10.3390/plants13162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is crucial in plant metabolism and responses to various abiotic stresses. In the glycolysis pathway, glyceraldehyde-3-phosphate (G3P) is oxidized to 1,3-bisphosphate glycerate (1,3-BPG) through the catalytic action of GAPDH. However, the GAPDH gene family in Quercus rubra has been minimally researched. In this study, we identified 13 GAPDH-encoding genes in Q. rubra through a bioinformatics analysis of genomic data. Evolutionary studies suggest that these QrGAPDH genes are closely related to those in Glycine max and Triticum aestivum. We conducted a comprehensive whole-genome study, which included predictions of subcellular localization, gene structure analysis, protein motif identification, chromosomal placement, and analysis of cis-acting regions. We also examined the expression of GAPDH proteins and genes in various tissues of Q. rubra and under drought stress. The results indicated diverse expression patterns across different tissues and differential expression under drought conditions. Notably, the expression of Qurub.02G290300.1, Qurub.10G209800.1, and Qrub.M241600.1 significantly increased in the leaf, stem, and root tissues under drought stress. This study provides a systematic analysis of QrGAPDH genes, suggesting their pivotal roles in the drought stress response of trees.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| | | | - Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| |
Collapse
|
8
|
Li J, Zhang Y, Tang X, Liao W, Li Z, Zheng Q, Wang Y, Chen S, Zheng P, Cao S. Genome Identification and Expression Profiling of the PIN-Formed Gene Family in Phoebe bournei under Abiotic Stresses. Int J Mol Sci 2024; 25:1452. [PMID: 38338732 PMCID: PMC10855349 DOI: 10.3390/ijms25031452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
PIN-formed (PIN) proteins-specific transcription factors that are widely distributed in plants-play a pivotal role in regulating polar auxin transport, thus influencing plant growth, development, and abiotic stress responses. Although the identification and functional validation of PIN genes have been extensively explored in various plant species, their understanding in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. P. bournei is an economically significant tree species that is endemic to southern China. For this study, we employed bioinformatics approaches to screen and identify 13 members of the PIN gene family in P. bournei. Through a phylogenetic analysis, we classified these genes into five sub-families: A, B, C, D, and E. Furthermore, we conducted a comprehensive analysis of the physicochemical properties, three-dimensional structures, conserved motifs, and gene structures of the PbPIN proteins. Our results demonstrate that all PbPIN genes consist of exons and introns, albeit with variations in their number and length, highlighting the conservation and evolutionary changes in PbPIN genes. The results of our collinearity analysis indicate that the expansion of the PbPIN gene family primarily occurred through segmental duplication. Additionally, by predicting cis-acting elements in their promoters, we inferred the potential involvement of PbPIN genes in plant hormone and abiotic stress responses. To investigate their expression patterns, we conducted a comprehensive expression profiling of PbPIN genes in different tissues. Notably, we observed differential expression levels of PbPINs across the various tissues. Moreover, we examined the expression profiles of five representative PbPIN genes under abiotic stress conditions, including heat, cold, salt, and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. In summary, this study systematically analyzes the expression patterns of PIN genes and their response to abiotic stresses in P. bournei using whole-genome data. Our findings provide novel insights and valuable information for stress tolerance regulation in P. bournei. Moreover, the study offers significant contributions towards unraveling the functional characteristics of the PIN gene family.
Collapse
Affiliation(s)
- Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuoqun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Cheng J, Li T, Wei S, Jiang W, Li J, Wang Y, Li Y. Physiological and Proteomic Changes in Camellia semiserrata in Response to Aluminum Stress. Genes (Basel) 2023; 15:55. [PMID: 38254944 PMCID: PMC10815133 DOI: 10.3390/genes15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Camellia semiserrata is an important woody edible oil tree species in southern China that is characterized by large fruits and seed kernels with high oil contents. Increasing soil acidification due to increased use of fossil fuels, misuse of acidic fertilizers, and irrational farming practices has led to leaching of aluminum (Al) in the form of free Al3+, Al(OH)2+, and Al(OH)2+, which inhibits the growth and development of C. semiserrata in South China. To investigate the mechanism underlying C. semiserrata responses to Al stress, we determined the changes in photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substance contents of C. semiserrata leaves under different concentrations of Al stress treatments (0, 1, 2, 3, and 4 mmol/L Alcl3) using a combination of physiological and proteomics approaches. In addition, we identified the differentially expressed proteins (DEPs) under 0 (CK or GNR0), 2 mmol/L (GNR2), and 4 mmol/L (GNR4) Al stress using a 4D-label-free technique. With increasing stress concentration, the photosynthetic indexes of C. semiserrata leaves, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), soluble protein (SP), and soluble sugar (SS) showed an overall trend of increasing and then decreasing, and proline (Pro) and malondialdehyde (MDA) contents tended to continuously increase overall. Compared with the control group, we identified 124 and 192 DEPs in GNR2 and GNR4, respectively, which were mainly involved in metabolic processes such as photosynthesis, flavonoid metabolism, oxidative stress response, energy and carbohydrate metabolism, and signal transduction. At 2 mmol/L Al stress, carbon metabolism, amino sugar and nucleotide sugar metabolism, and flavonoid metabolism-related proteins were significantly changed, and when the stress was increased to 4 mmol/L Al, the cells accumulated reactive oxygen species (ROS) at a rate exceeding the antioxidant system scavenging capacity. To deal with this change, C. semiserrata leaves enhanced their glutathione metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and other metabolic processes to counteract peroxidative damage to the cytoplasmic membrane caused by stress. In addition, we found that C. semiserrata resisted aluminum toxicity mainly by synthesizing anthocyanidins under 2 mmol/L stress, whereas proanthocyanidins were alleviated by the generation of proanthocyanidins under 4 mmol/L stress, which may be a special mechanism by which C. semiserrata responds to different concentrations of aluminum stress.
Collapse
Affiliation(s)
- Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Tong Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Jingxuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yongquan Li
- Scarce and Quality Economic Forest Engineering Technology Research Center, Guangzhou 510225, China
| |
Collapse
|
10
|
Geng S, Li S, Zhao J, Gao W, Chen Q, Zheng K, Wang Y, Jiao Y, Long Y, Liu P, Qu Y, Chen Q. Glyceraldehyde-3-phosphate dehydrogenase Gh_GAPDH9 is associated with drought resistance in Gossypium hirsutum. PeerJ 2023; 11:e16445. [PMID: 38025668 PMCID: PMC10676720 DOI: 10.7717/peerj.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the central enzyme of glycolysis and plays important regulatory roles in plant growth and development and responses to adverse stress conditions. However, studies on the characteristics and functions of cotton GAPDH family genes are still lacking. Methods In this study, genome-wide identification of the cotton GAPDH gene family was performed, and the phylogeny, gene structures, promoter progenitors and expression profiles of upland cotton GAPDH gene family members were explored by bioinformatics analysis to highlight potential functions. The functions of GhGAPDH9 in response to drought stress were initially validated based on RNA-seq, qRT‒PCR, VIGS techniques and overexpression laying a foundation for further studies on the functions of GAPDH genes. Results This study is the first systematic analysis of the cotton GAPDH gene family, which contains a total of 84 GAPDH genes, among which upland cotton contains 27 members. Quantitative, phylogenetic and covariance analyses of the genes revealed that the GAPDH gene family has been conserved during the evolution of cotton. Promoter analysis revealed that most cis-acting elements were related to MeJA and ABA. Based on the identified promoter cis-acting elements and RNA-seq data, it was hypothesized that Gh_GAPDH9, Gh_GAPDH11, Gh_GAPDH19 and Gh_GAPDH21 are involved in the response of cotton to abiotic stress. The expression levels of the Gh_GAPDH9 gene in two drought-resistant and two drought-sensitive materials were analyzed by qRT‒PCR and found to be high early in the treatment period in the drought-resistant material. The silencing of Gh_GAPDH9 based on virus-induced gene silencing (VIGS) technology resulted in significant leaf wilting or whole-plant dieback in silenced plants after drought stress compared to the control. The content of-malondialdehyde (MDA) in cotton leaves was significantly increased, and the content of proline (Pro) and chlorophyll (Chl) was reduced. In addition, the leaf wilting and dryness of transgenic lines under drought stress were lower than those of wild-type Arabidopsis, indicating that Gh_GAPDH9 is a positive regulator of drought resistance. In conclusion, our results demonstrate that GAPDH genes play an important role in the response of cotton to abiotic stresses and provide preliminary validation of the function of the Gh_GAPDH9 gene under drought stress. These findings provide an important theoretical basis for further studies on the function of the Gh_GAPDH9 gene and the molecular mechanism of the drought response in cotton.
Collapse
Affiliation(s)
- Shiwei Geng
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Shengmei Li
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Jieyin Zhao
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Wenju Gao
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Qin Chen
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Kai Zheng
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Yuxiang Wang
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Yang Jiao
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Yilei Long
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Pengfei Liu
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Uribe-López B, Barraza A, Cabrera-Ponce JL. Exploring the Potential Role of Ribosomal Proteins to Enhance Potato Resilience in the Face of Changing Climatic Conditions. Genes (Basel) 2023; 14:1463. [PMID: 37510367 PMCID: PMC10379993 DOI: 10.3390/genes14071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the development of potato varieties through genome editing holds great promise. In this study, we performed a comprehensive transcriptomic analysis to investigate microtuber development and identified several differentially expressed genes, with a particular focus on ribosomal proteins-RPL11, RPL29, RPL40 and RPL17. Our results reveal, by protein-protein interaction (PPI) network analyses, performed with the highest confidence in the STRING database platform (v11.5), the critical involvement of these ribosomal proteins in microtuber development, and highlighted their interaction with PEBP family members as potential microtuber activators. The elucidation of the molecular biological mechanisms governing ribosomal proteins will help improve the resilience of potato crops in the face of today's changing climatic conditions.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Braulio Uribe-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz CP 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|