1
|
Labarga D, Mairata A, Puelles M, Wallner A, Aziz A, Alícia P. Rootstocks and drought stress impact the composition and functionality of grapevine rhizosphere bacterial microbiota. Microbiol Res 2025; 293:128073. [PMID: 39864304 DOI: 10.1016/j.micres.2025.128073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered. This study aimed to unravel the impact of five rootstocks, water management and the combination of both on the rhizosphere bacterial microbiota in grapevines using shotgun metagenomics approach. The results showed that drought impacted the diversity, composition and functionality of the rhizosphere bacterial community. The genera Mycolicibacterium, Mycobacterium and Rhodococcus, and the bacterial functions, including DNA damage repair, fatty acid synthesis, sugar and amino acid transport, oxidative stress reduction, toxin synthesis and detoxification of exogenous compounds were significantly enriched under drought conditions. Rootstocks also significantly affected the rhizosphere bacterial richness but its influence on diversity and functionality compared to water management was weaker. Some taxa and function could be linked to water managements applied. The interaction between rootstocks and water management further influenced the rhizosphere composition, especially under drought conditions, where distinct clustering was observed for specific rootstocks. The results highlight the importance of conducting multifactorial studies to better understand their impact on shaping functional rhizosphere bacterial communities. This study paves the way for future research on beneficial bacterial inoculation and genetic engineering of rootstock to cope with drought stress.
Collapse
Affiliation(s)
- David Labarga
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain
| | - Andreu Mairata
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain
| | - Miguel Puelles
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain
| | - Adrian Wallner
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Aziz Aziz
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Pou Alícia
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain.
| |
Collapse
|
2
|
R V, Granada DL, Skariyachan S, P U, K S. In vitro and In silico investigation deciphering novel antifungal activity of endophyte Bacillus velezensis CBMB205 against Fusarium oxysporum. Sci Rep 2025; 15:684. [PMID: 39753601 PMCID: PMC11698993 DOI: 10.1038/s41598-024-77926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 01/06/2025] Open
Abstract
Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease. In the present study, the endophytic bacterium was isolated from Globba racemosa and their antagonistic activities against Foc were studied, and the probable molecular mechanism of antagonism was predicted by molecular docking studies. The 16SrRNA sequencing confirmed the endophytic isolate to be Bacillus velezensis CBMB205 (EG2). The antagonistic activities of the isolates by distortion of fungal hyphae were illustrated in SEM. The probable metabolites present in endophytic isolate were identified by FTIR, suggesting the presence of C-H, CH3 and O-H groups. Two major metabolites such as β-amyrin and dihydroxy octadecenoic acid (DA) were confirmed by LC-MS analysis. Molecular docking studies suggested that these metabolites showed potential binding with chitin synthase 1 and fungal 1,3-glucan synthase of pathogenic fungi. The binding energy (BE) of the molecular interaction between β-amyrin and chitin synthase-1 (CS-1), and 1,3-glucan synthase (1,3-GS) were estimated to be -10.17 kcal/mol and - 9.5 kcal/mol, respectively. The BE of the interaction between β-amyrin and CS-1 and 1,3-GS were determined to be -2.43 kcal/mol and 3.4 kcal/mol, respectively. The current study demonstrated the antagonistic activities of EG2 towards Foc and provided a probable molecular mechanism by in silico studies. The study also provides a potential insight into developing endophytic metabolite-based antifungal agents for various agricultural applications.
Collapse
Affiliation(s)
- Vibha R
- Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India
| | - Daniela Loaiza Granada
- Department of Agricultural Science, Jaime Isaza Cadavid Colombian Polytechnic, Medellin, Colombia
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India
| | - Ujwal P
- Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India.
| | - Sandesh K
- Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India.
| |
Collapse
|
3
|
Duret M, Wallner A, Buée M, Aziz A. Rhizosphere microbiome assembly, drivers and functions in perennial ligneous plant health. Microbiol Res 2024; 287:127860. [PMID: 39089083 DOI: 10.1016/j.micres.2024.127860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge. To date, such attempts were mainly investigated in herbaceous plants, due to their phenotypic characteristics and their short life cycle. However, only few studies have focused on the microbial structure, dynamic and their drivers in perennial ligneous plants. Ligneous plants coevolved in interaction with specific fungal and bacterial communities that differ from those of annual plants. The specificities of such ligneous plants in shaping their own functional microbial communities could be dependent on their high heterozygosis, physiological and molecular status associated to seasonality and their aging processes, root system and above-ground architectures, long-lasting climatic variations, and specific cultural practices. This article provides an overview of the specific characteristics of perennial ligneous plants that are likely to modulate symbiotic interactions in the rhizosphere, thus affecting the plant's fitness and systemic immunity. Plant and microbial traits contributing to the establishment of plant-microbiome interactions and the adaptation of this holobiont are also discussed.
Collapse
Affiliation(s)
- Morgane Duret
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Adrian Wallner
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Marc Buée
- Centre INRAE Grand Est-Nancy, UMR Interactions Arbres-Microorganismes, Champenoux 54280, France
| | - Aziz Aziz
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France.
| |
Collapse
|
4
|
Lailheugue V, Darriaut R, Tran J, Morel M, Marguerit E, Lauvergeat V. Both the scion and rootstock of grafted grapevines influence the rhizosphere and root endophyte microbiomes, but rootstocks have a greater impact. ENVIRONMENTAL MICROBIOME 2024; 19:24. [PMID: 38654392 DOI: 10.1186/s40793-024-00566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Soil microorganisms play an extensive role in the biogeochemical cycles providing the nutrients necessary for plant growth. Root-associated bacteria and fungi, originated from soil, are also known to influence host health. In response to environmental stresses, the plant roots exude specific molecules influencing the composition and functioning of the rhizospheric and root microbiomes. This response is host genotype-dependent and is affected by the soil microbiological and chemical properties. It is essential to unravel the influence of grapevine rootstock and scion genotypes on the composition of this microbiome, and to investigate this relationship with plant growth and adaptation to its environment. Here, the composition and the predicted functions of the microbiome of the root system were studied using metabarcoding on ten grapevine scion-rootstock combinations, in addition to plant growth and nutrition measurements. RESULTS The rootstock genotype significantly influenced the diversity and the structure of the bacterial and fungal microbiome, as well as its predicted functioning in rhizosphere and root compartments when grafted with the same scion cultivar. Based on β-diversity analyses, 1103P rootstock showed distinct bacterial and fungal communities compared to the five others (RGM, SO4, 41B, 3309 C and Nemadex). The influence of the scion genotype was more variable depending on the community and the investigated compartment. Its contribution was primarily observed on the β-diversity measured for bacteria and fungi in both root system compartments, as well as for the arbuscular mycorrhizal fungi (AMF) in the rhizosphere. Significant correlations were established between microbial variables and the plant phenotype, as well as with the plant mineral status measured in the petioles and the roots. CONCLUSION These results shed light on the capacity of grapevine rootstock and scion genotypes to recruit different functional communities of microorganisms, which affect host growth and adaptation to the environment. Selecting rootstocks capable of associating with positive symbiotic microorganisms is an adaptation tool that can facilitate the move towards sustainable viticulture and help cope with environmental constraints.
Collapse
Affiliation(s)
- Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes, F-35000, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Marine Morel
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France.
| |
Collapse
|
5
|
Ranauda MA, Zuzolo D, Maisto M, Tartaglia M, Scarano P, Prigioniero A, Sciarrillo R, Guarino C. Microplastics affect soil-plant system: Implications for rhizosphere biology and fitness of sage (Salvia officinalis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123656. [PMID: 38408506 DOI: 10.1016/j.envpol.2024.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
A mesocosm experiment was set-up to investigate the effects of low-density polyethylene (LDPE) fragments deriving from plastic film on soil ecology, rhizosphere and plant (Salvia officinalis L.) fitness. The internal transcribed spacer (ITS) and 16S metagenomic analysis was adopted to evaluate taxonomic and functional shifts of both soil and rhizosphere under the influence of microplastics (MPs). Photosynthetic parameters and enzymes involved in oxidative stress were assessed to unveil the plant physiological state. MP fragments were analysed by scanning electron microscope (SEM) and metagenomics to investigate the plastisphere. Microbial biomarkers of MPs pollution were identified in soil and rhizosphere, reinforcing the concept of molecular biomonitoring. Overall, Bacillus, Nocardioides and Streptomyces genera are bacterial biomarkers of MPs pollution in soil whereas Aspergillus, Fusarium and Trichoderma genera, and Nectriaceae family are fungal biomarkers of MPs polluted soil. The data show that the presence of MPs promotes the abundance of taxa involved in the soil N cycle, but simultaneously reduces the endophytic interaction capability and enhances pathogen related functions at the rhizosphere level. A significant decrease in chlorophyll levels and increase of oxidative stress enzymes was observed in plants grown in MPs-polluted soil. The SEM observations of MPs fragments revealed a complex colonisation, where bacteria (Bacillus in MPSo and Microvirga in MPRz) and fungi (Aspergillus in MPSo and Trichoderma in MPRz) represent the main colonisers. The results demonstrate that the presence of MPs causes changes in the soil and rhizosphere microbial community and functions leading to negative effects on plant fitness.
Collapse
Affiliation(s)
- Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy.
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| |
Collapse
|