1
|
Awan MJA, Farooq MA, Buzdar MI, Zia A, Ehsan A, Waqas MAB, Hensel G, Amin I, Mansoor S. Advances in gene editing-led route for hybrid breeding in crops. Biotechnol Adv 2025; 81:108569. [PMID: 40154762 DOI: 10.1016/j.biotechadv.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
With the global demand for sustainable agriculture on the rise, RNA-guided nuclease technology offers transformative applications in crop breeding. Traditional hybrid breeding methods, like three-line and two-line systems, are often labor-intensive, transgenic, and economically burdensome. While chemical mutagens facilitate these systems, they not only generate weak alleles but also produce strong alleles that induce permanent sterility through random mutagenesis. In contrast, RNA-guided nuclease system, such as clustered regularly interspaced short palindromic repeats (CRISPR)- associated protein (Cas) system, facilitates more efficient hybrid production by inducing male sterility through targeted genome modifications in male sterility genes, such as MS8, MS10, MS26, and MS45 which allows precise manipulation of pollen development or pollen abortion in various crops. Moreover, this approach allows haploid induction for the rapid generation of recombinant and homozygous lines from hybrid parents by editing essential genes, like CENH3, MTL/NLD/PLA, and DMP, resulting in high-yield, transgene-free hybrids. Additionally, this system supports synthetic apomixis induction by employing the MiMe (Mitosis instead of Meiosis) strategy, coupled with parthenogenesis in hybrid plants, to create heterozygous lines and retain hybrid vigor in subsequent generations. RNA-guided nuclease-induced synthetic apomixis also enables genome stacking for autopolyploid progressive heterosis via clonal gamete production for trait maintenance to enhance crop adaptability without compromising yield. Additionally, CRISPR-Cas-mediated de novo domestication of wild relatives, along with recent advances to circumvent tissue culture- recalcitrance and -dependency through heterologous expression of morphogenic regulators, holds great promise for incorporating diversity-enriched germplasm into the breeding programs. These approaches aim to generate elite hybrids adapted to dynamic environments and address the anticipated challenges of food insecurity.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Muhammad Awais Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Italy
| | - Muhammad Ismail Buzdar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Asma Zia
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Aiman Ehsan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abu Bakar Waqas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Goetz Hensel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Centre for Plant Genome Engineering, Düsseldorf, Germany; Cluster of Excellence in Plant Sciences "SMART Plants for Tomorrow's Needs", Heinrich Heine University Düsseldorf, Germany.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
2
|
Sohail A, Lu C, Xu P. Genetic and molecular mechanisms underlying the male sterility in rice. J Appl Genet 2025; 66:251-265. [PMID: 39627604 DOI: 10.1007/s13353-024-00923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 04/16/2025]
Abstract
Male reproductive development is a complex and highly ordered phenomenon which demands comprehensive understandings of underlying molecular mechanisms to expand its scope for crop improvement. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Although male sterility is not a good trait for the plant itself, its wider application in hybrid rice breeding has made it valuable. The currently widely used male sterile line breeding systems mainly include the following: three-line hybrid rice based on cytoplasmic male sterility and two-line hybrid rice based on environmentally sensitive gene male sterility. The study of male sterility is an excellent thoroughfare to critically understand the regulatory mechanisms essential for the complicated male reproductive developmental process. The unique trait of male sterility also provides valuable resources and convenience for the genetic improvement of rice hybrids. Therefore, deeper and broader understandings about the genetic causes of male sterility are necessary for both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China
| | - Chengkai Lu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| | - Peng Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| |
Collapse
|
3
|
Liu J, Wu S, Shi H. Circular cell clusters and calcium oxalate crystals: critical players in Solanaceae anther dehiscence. PLANTA 2025; 261:120. [PMID: 40299132 DOI: 10.1007/s00425-025-04701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
MAIN CONCLUSION Circular cell clusters in Solanaceae anthers, crucial for pollen release, influence anther opening through coordinated development, programmed cell death, and calcium oxalate crystal dynamics. Circular cell clusters (CCCs), which are specialised crystal idioblasts, represent unique anatomical structures in Solanaceae anthers. These clusters may impact anther dehiscence through precisely coordinated developmental processes and programmed cell death (PCD). The dynamic metabolism of calcium oxalate (CaOx) crystals within CCCs likely contributes to PCD signalling. Although many factors, such as phytohormones, anther wall mechanics, and dehydration processes, influence anther dehiscence, it is increasingly clear that the CaOx crystals in CCCs are important for the timely degradation of CCCs and stomium cells. This review summarises the current understanding of the functions of CCCs in Solanaceae, highlighting their multifaceted roles in plant reproduction. A deeper comprehension of these mechanisms may provide insights for innovative crop improvement strategies. Similar structures in other plant families indicate a conserved evolutionary strategy for anther dehiscence across angiosperms.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Shiyi Wu
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Hongyong Shi
- School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Farinati S, Soria Garcia AF, Draga S, Vannozzi A, Palumbo F, Scariolo F, Gabelli G, Barcaccia G. Unlocking male sterility in horticultural crops through gene editing technology for precision breeding applications: presentation of a case study in tomato. FRONTIERS IN PLANT SCIENCE 2025; 16:1549136. [PMID: 40115958 PMCID: PMC11924944 DOI: 10.3389/fpls.2025.1549136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Plant male sterility (MS) refers to the failure of the production of functional anthers, viable pollen grains and/or fertile sperm cells. This feature has great potential in horticultural crops for the exploitation of heterosis through the development of F1 hybrid varieties. MS in plants can occur spontaneously or can be induced artificially by exploiting biotechnological tools, such as the editing of genes involved in spore formation or pollen development. The success of such an approach strongly depends both on preliminary knowledge of the involved genes and on effective procedures for in vitro transfection/regeneration of whole plants. Furthermore, according to previous studies based on CRISPR/Cas9 technology, the efficacy of targeting and the resulting mutation profile are critically influenced by intrinsic factors, such as the CRISPR target primary sequence sites and chromatin signatures, which are often associated with varying levels of chromatin accessibility across different genomic regions. This relationship underscores the complexity of CRISPR-based genome editing and highlights the need to identify a precise suitable target. Our paper reports the results obtained for site-specific in vivo mutagenesis via a CRISPR/Cas9-mediated strategy applied to the MYB80 gene, which is a promising target for implementing male sterility in horticultural crops. We highlight the main steps that play a key role in the whole experimental pipeline, which aims at the generation of CRISPR/Cas-edited DNA-free tomato plants. This goal was achieved via protoplast-based technology and by directly delivering a ribonucleoprotein complex consisting of the Cas9 protein and in vitro synthesized single guide RNAs that can target different positions of the gene under investigation. Overall findings and insights are presented and critically discussed.
Collapse
Affiliation(s)
- Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Adriana Fernanda Soria Garcia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| |
Collapse
|
5
|
Priyadarsini S, Singh S, Nandi A. Molecular advances in research and applications of male sterility systems in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109503. [PMID: 39818069 DOI: 10.1016/j.plaphy.2025.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Tomato, belonging to the nightshade family, is globally considered as a model system for classical and molecular genetics, genomics, and reproductive developmental studies. In the current scenario of climate change, hybrid development is among the crucial elements in the genetic improvement of crop plants. The phenomenon of male sterility is a viable approach for ensuring hybrid seed purity and reducing the cost of hybrid seed production. This review aims to shed light on the use of neoteric genomics and genome editing tools in understanding the genetics and molecular regulation of male sterility in tomato. Plant male gametophyte development is highly susceptible to environmental stress. Abnormalities at any stage of male reproductive development, such as premature or delayed tapetal cell degradation triggered by oxidative stress and programmed cell death (PCD) leads to male sterility in tomato. In tomato, more than 55 sporogenous, structural, and functional male sterile mutants, which are mainly under the control of recessive nuclear genes, have been reported. Recently, the role of open reading frames (ORFs) in governing cytoplasmic male sterility in tomato has also been documented. This review highlights the genetic and genomic progress in the investigation of underlying molecular pathways and practical application of potential male sterile mutants in tomato breeding. The applications and future prospects of genome engineering with CRISPR/Cas9 and mitoTALEN in the generation of novel male sterile systems to expedite tomato breeding is discussed.
Collapse
Affiliation(s)
- Srija Priyadarsini
- Department of Vegetable Science, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar, 751003, India
| | - Saurabh Singh
- Department of Vegetable Science, College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University (RLBCAU), Jhansi, U.P, 284003, India.
| | - Alok Nandi
- Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| |
Collapse
|
6
|
Bohra A, Tiwari A, Pareek S, Joshi R, Satheesh Naik SJ, Kumari K, Verma RL, Parihar AK, Patil PG, Dixit GP. Past and future of cytoplasmic male sterility and heterosis breeding in crop plants. PLANT CELL REPORTS 2025; 44:33. [PMID: 39841239 DOI: 10.1007/s00299-024-03414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops. The CMS system has illustrated its potential as a robust pollination control mechanism to support the billion-dollar seed industry. In plants, CMS arises due to a genomic conflict between mitochondrial open reading frames (orfs) and nuclear-encoding restoration-of-fertility (Rf) genes, leading to floral abnormalities and pollen sterility. Research on pollen sterility and fertility restoration provides deeper insights into cytoplasmic-nuclear interplay in plants and elucidates key molecular targets for hybrid breeding in crops. More recently, programmable gene editing (e.g., TALEN, CRISPR-Cas) has emerged as a promising tool to functionally validate CMS and Rf genes and obviate the need for pollen donors or Rf-genes for hybrid breeding. Modern genomic prediction models have allowed establishment of high-performing heterotic groups and patterns for sustaining long-term gain in hybrid breeding. This article reviews latest discoveries elucidating the molecular mechanisms behind CMS and fertility restoration in plants. We then present our perspective on how evolving genetic technologies are contributing to advance fundamental knowledge of the CMS-Rf genetic system for producing crop hybrids with high heterosis.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India.
| | - Abha Tiwari
- ICAR-National Institute of Biotic Stresses Management, Baronda, Chhattisgarh, 493225, India
| | - Shalini Pareek
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - S J Satheesh Naik
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Khushbu Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ram Lakhan Verma
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ashok K Parihar
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Prakash G Patil
- ICAR-National Research Centre On Pomegranate (NRCP), Solapur, 413 255, India
| | - Girish P Dixit
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| |
Collapse
|
7
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
8
|
Dharsini VD, Subramanian A, Premalatha N, Boopathi NM, Djanaguiraman M, Santhanakrishnan VP. Fertile grounds: exploring male sterility in cotton and its marker development. Mol Biol Rep 2024; 51:961. [PMID: 39235637 DOI: 10.1007/s11033-024-09893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
The high cost of producing conventional hybrid cotton seeds led to more research efforts on cotton male sterility systems. There is a lack of studies on cytology, histology, morphological variation, yield, and altered restorer backgrounds to identify and develop male sterility markers in cotton hybrids. Hybrid cotton can be efficiently produced by exploiting genetic male sterility. Among the 19 Genetic Male Sterility (GMS) genes discovered, the lines with ms5ms6 genes are mostly utilised to establish successful hybrid cotton in India. Molecular markers closely associated with the MS alleles are identified to facilitate the efficient and rapid backcrossing of male-sterility genes into elite lines or cultivars by marker-assisted backcrossing. The majority of the markers which are random DNA markers (RDMs), are probably lost, when recombination occurs. In contradiction, molecular markers (functional markers, or FMs) within the genic region can be identified and employed in crops for diverse traits, if prospective characteristic genes are known. In this review, the mechanism of male sterility, its gene expression level, and the need for functional markers for the male sterility trait in cotton have been put forward.
Collapse
Affiliation(s)
- V Deepa Dharsini
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Subramanian
- Department of Cotton, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - N Premalatha
- Department of Cotton, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - N Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Djanaguiraman
- Department of Crop Physiology, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - V P Santhanakrishnan
- Department of Medicinal and Aromatic Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
9
|
Baguma JK, Mukasa SB, Ochwo-Ssemakula M, Nuwamanya E, Iragaba P, Wembabazi E, Kanaabi M, Hyde PT, Setter TL, Alicai T, Yada B, Esuma W, Baguma Y, Kawuki RS. Assessment of Cassava Pollen Viability and Ovule Fertilizability under Red-Light, 6-Benzyl Adenine, and Silver Thiosulphate Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1988. [PMID: 39065515 PMCID: PMC11280604 DOI: 10.3390/plants13141988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Understanding pollen and ovule fertility as factors influencing fruit and seed set is important in cassava breeding. Extended daylength with red light (RL) and plant growth regulators (PGRs) have been used to induce flowering and fruit set in cassava without any reference to effects on pollen viability or ovule fertilizability. This study investigated the effects of field-applied RL and PGR on pollen viability and ovule fertilizability. Panels of cassava genotypes with early or moderate flowering responses were used. RL was administered from dusk to dawn. Two PGRs, 6-benzyl adenine (BA), a cytokinin and silver thiosulphate (STS), an anti-ethylene, were applied. Pollen viability was assessed based on pollen grain diameter, in vitro stainability, in vivo germinability, ovule fertilizability, and ploidy level. Treating flowers with RL increased the pollen diameter from 145.6 in control to 148.5 µm in RL, 78.5 to 93.0% in stainability, and 52.0 to 56.9% in ovule fertilizability in treated female flowers. The fruit set also increased from 51.5 in control to 71.8% in RL-treated female flowers. The seed set followed a similar trend. The ploidy level of pollen from RL-treated flowers increased slightly and was positively correlated with pollen diameter (R2 = 0.09 *), ovule fertilization (R2 = 0.20 *), fruit set (R2 = 0.59 *), and seed set (R2 = 0.60 *). Treating flowers with PGR did not affect pollen diameter but increased stainability from 78.5% in control to 82.1%, ovule fertilizability from 42.9 to 64.9%, and fruit set from 23.2 to 51.9% in PGR-treated female flowers. Combined BA + STS application caused the highest ovule fertilizability, fruit, and seed set efficiency. These results show that RL and PGR treatments increase pollen viability and ovule fertilizability. This is important for planning pollination strategies in cassava breeding programmes.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Paula Iragaba
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Michael Kanaabi
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Peter T. Hyde
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (P.T.H.); (T.L.S.)
| | - Tim L. Setter
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (P.T.H.); (T.L.S.)
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | - Benard Yada
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | - Williams Esuma
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | - Yona Baguma
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | | |
Collapse
|
10
|
Wu Z, Yang Y, Li T, Shen Z, Zhou X, Zhang Y. Genetic characterization and fine mapping of a recessive genic male-sterile gene in flowering Chinese cabbage ( Brassica rapa var. parachinensis). 3 Biotech 2024; 14:160. [PMID: 38779526 PMCID: PMC11106044 DOI: 10.1007/s13205-024-04005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Brassica vegetables exhibit pronounced heterosis; nevertheless, investigations on fertility-related genes are scarce. The present study scrutinized a recessive genic male-sterile line, 7-3A, capable of generating a completely sterile population, holding significant promise for flowering Chinese cabbage breeding. By whole-genome resequencing of sterile and fertile plants, the male-sterile gene was confined to approximately 185 kb on chromosome A07, situated between markers C719 and NP10 in Brassica rapa var. Chiifu-401. Notably, substantial structural variation was identified within this region across diverse Brassica rapa reference genomes. Despite discernible expression level disparities of a homologous gene, Bnams4b, between male sterile and fertile plants, no sequence divergence was detected. Further elucidation is required to pinpoint a novel sterile gene within the candidate interval. This investigation contributes to the advancement of both the molecular-assisted breeding scheme for flowering Chinese cabbage and the comprehension of male sterility mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04005-7.
Collapse
Affiliation(s)
- Zengxiang Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tingyao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhuo Shen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Xuan Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Yan Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
11
|
Qiao Z, Deng F, Zeng H, Li X, Lu L, Lei Y, Li L, Chen Y, Chen J. MADS-Box Family Genes in Lagerstroemia indica and Their Involvement in Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:709. [PMID: 38475555 DOI: 10.3390/plants13050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
MADS-box is a key transcription factor regulating the transition to flowering and flower development. Lagerstroemia indica 'Xiang Yun' is a new cultivar of crape myrtle characterized by its non-fruiting nature. To study the molecular mechanism underlying the non-fruiting characteristics of 'Xiang Yun', 82 MADS-box genes were identified from the genome of L. indica. The physicochemical properties of these genes were examined using bioinformatics methods, and their expression as well as endogenous hormone levels at various stages of flower development were analyzed. The results showed that LiMADS genes were primarily classified into two types: type I and type II, with the majority being type II that contained an abundance of cis-acting elements in their promoters. By screening nine core proteins by predicted protein interactions and performing qRT-PCR analysis as well as in combination with transcriptome data, we found that the expression levels of most MADS genes involved in flower development were significantly lower in 'Xiang Yun' than in the wild type 'Hong Ye'. Hormonal analysis indicated that 'Xiang Yun' had higher levels of iP, IPR, TZR, and zeatin during its early stages of flower development than 'Hong Ye', whereas the MeJA content was substantially lower at the late stage of flower development of 'Hong Ye'. Finally, correlation analysis showed that JA, IAA, SA, and TZR were positively correlated with the expression levels of most type II genes. Based on these analyses, a working model for the non-fruiting 'Xiang Yun' was proposed. During the course of flower development, plant hormone response pathways may affect the expression of MADS genes, resulting in their low expression in flower development, which led to the abnormal development of the stamen and embryo sac and ultimately affected the fruiting process of 'Xiang Yun'.
Collapse
Affiliation(s)
- Zhongquan Qiao
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Fuyuan Deng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Huijie Zeng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Xuelu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liushu Lu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuxing Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA
| |
Collapse
|
12
|
Radchenko EE, Anisimova IN, Ryazanova MK, Kibkalo IA, Alpatieva NV. Newly Developed Restorer Lines of Sorghum [ Sorghum bicolor (L.) Moench] Resistant to Greenbug. PLANTS (BASEL, SWITZERLAND) 2024; 13:425. [PMID: 38337958 PMCID: PMC10857335 DOI: 10.3390/plants13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Eight lines of grain sorghum [Sorghum bicolor (L.) Moench], which can be used as a promising source material in heterotic hybrid breeding as pollen fertility restorers and donors of resistance to the greenbug (Schizaphis graminum Rondani), are characterized. The new restorer lines (R-lines) were developed by crossing the maternal sterile line Nizkorosloe 81s (CMS A1) with two lines selected from the grain sorghum collection accessions VIR-928 and VIR-929 as the paternal forms. The R-lines were genotyped using PCR markers, and also characterized by height, duration of the seedling-flowering period, and some of the technological properties of flour. With the use of microsatellite markers linked to the Rf genes and by hybridological analysis, it was shown that the new lines carry the dominant allele of the gene Rf2. The PCoA analysis demonstrated clear differences of each R-line from the parents. The genotypes of the new lines and their parental forms for the Rf2 locus were confirmed by applying three allele-specific codominant CAPS markers which detected SNPs in the candidate Rf2 gene. All new lines were highly fertile, as demonstrated by cytological analysis of acetocarmine-stained pollen preparations. A high resistance to the greenbug was demonstrated for each new R-line both in the laboratory and field conditions against a severe aphid infestation. Grain quality parameters such as protein content and dough rheological properties varied widely and were quite satisfactory in some R-lines. Characteristics common to all eight sorghum lines studied, such as the ability to restore pollen fertility in the F1 generation, good pollen quality, greenbug resistance, early ripening, spreading panicle, and low stature, allow us to recommend them for producing commercial F1 hybrids with satisfactory grain quality for both fodder and food purposes.
Collapse
Affiliation(s)
| | - Irina N. Anisimova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia; (E.E.R.); (M.K.R.); (I.A.K.); (N.V.A.)
| | | | | | | |
Collapse
|
13
|
Ramlal A, Nautiyal A, Lal S, Chigeza G. Editorial: A wonder legume, soybean: prospects for improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1294185. [PMID: 37964996 PMCID: PMC10641011 DOI: 10.3389/fpls.2023.1294185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Affiliation(s)
- Ayyagari Ramlal
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Malaysia
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Aparna Nautiyal
- Department of Botany, Deshbandhu College, University of Delhi, Delhi, India
| | - S.K. Lal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Godfree Chigeza
- Soybean Breeder, International Institute of Tropical Agriculture (IITA) Zambia, Lusaka, Zambia
| |
Collapse
|