1
|
Niu S, Yu L, Li J, Qu L, Wang Z, Li G, Guo J, Lu D. Effect of high temperature on maize yield and grain components: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175898. [PMID: 39222820 DOI: 10.1016/j.scitotenv.2024.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global warming poses a significant challenge to global food security, with maize playing a vital role as a staple crop in ensuring food availability worldwide. Therefore, investigating the impact of high temperature (HT) on maize cultivation is imperative for addressing food security concerns. Despite numerous studies exploring the effects of HT on maize growth and yield, a comprehensive understanding of these effects remains elusive due to variations in experimental environments, varieties, and growth stages. To solve these limitations, a meta-analysis was conducted to assess the effects of HT on maize yield and grain components, synthesizing data from 575 observations across 34 studies. The findings indicate that 1) HT significantly reduced grain yield by 32.7-40.9 % and grain starch content by 2.8-10.5 %; 2) the vicinity of kernel development stage (include silking, blister, milk) is the period when maize kernels are most sensitive to HT; 3) a significant negative correlation was observed between HT degree and their impact on grain yield (R2 = 0.38, P = 0.043); and 4) the effects of HT days and degrees on maize yield were equally important. In conclusion, this meta-analysis establishes a theoretical framework for enhancing the resilience of maize production and cultivation practices by comprehensively evaluating the impact of HT on yield and grain components.
Collapse
Affiliation(s)
- Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Linyang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Balliau T, Ashenafi M, Blein-Nicolas M, Turc O, Zivy M, Marchadier E. A Moderate Water Deficit Induces Profound Changes in the Proteome of Developing Maize Ovaries. Biomolecules 2024; 14:1239. [PMID: 39456174 PMCID: PMC11506675 DOI: 10.3390/biom14101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Water deficit is a major cause of yield loss for maize (Zea mays), leading to ovary abortion when applied at flowering time. To help understand the mechanisms involved in this phenomenon, the proteome response to water deficit has been analysed in developing ovaries at the silk emergence stage and five days later. Differential analysis, abundance pattern clustering and co-expression networks were performed in order to draw a general picture of the proteome changes all along ovary development and under the effect of water deficit. The results show that even mild water deficit has a major impact on ovary proteome, but this impact is very different from a response to stress. A part of the changes can be related to a slowdown of ovary development, while another part cannot. In particular, ovaries submitted to water deficit show an increase in proteins involved in protein biosynthesis and in vesicle transport together with a decrease in proteins involved in amino acid metabolism and proteolysis. According to the functions of increased proteins, the changes may be linked to auxin, brassinosteroids and jasmonate signalling but not abscisic acid.
Collapse
Affiliation(s)
- Thierry Balliau
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Mariamawit Ashenafi
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Mélisande Blein-Nicolas
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Olivier Turc
- LEPSE, INRAE, Montpellier SupAgro, Université Montpellier, 34293 Montpellier, France;
| | - Michel Zivy
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Elodie Marchadier
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| |
Collapse
|
3
|
Fan KT, Xu Y, Hegeman AD. Elevated Temperature Effects on Protein Turnover Dynamics in Arabidopsis thaliana Seedlings Revealed by 15N-Stable Isotope Labeling and ProteinTurnover Algorithm. Int J Mol Sci 2024; 25:5882. [PMID: 38892074 PMCID: PMC11172382 DOI: 10.3390/ijms25115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Adrian D. Hegeman
- Departments of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
4
|
Xue M, Han X, Zhang L, Chen S. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize ( Zea mays L.). Genes (Basel) 2024; 15:289. [PMID: 38540348 PMCID: PMC10970198 DOI: 10.3390/genes15030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 06/14/2024] Open
Abstract
High temperatures are increasingly becoming a prominent environmental factor accelerating the adverse influence on the growth and development of maize (Zea mays L.). Therefore, it is critical to identify the key genes and pathways related to heat stress (HS) tolerance in maize. Great challenges have been faced in dissecting genetic mechanisms and uncovering master genes for HS tolerance. Here, Z58D showed more thermotolerance than AF171 at the seedling stage with a lower wilted leaf rate and H2O2 accumulation under HS conditions. Transcriptomic analysis identified 3006 differentially expressed genes (DEGs) in AF171 and 4273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that commonly upregulated genes in AF171 and Z58D were significantly enriched in the following biological processes, including protein folding, response to heat, response to temperature stimulus and response to hydrogen peroxide. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus were significantly over-represented for the 1234 upregulated genes in Z58D. Furthermore, more commonly upregulated genes exhibited higher expression levels in Z58D than AF171. In addition, maize inbred CIMBL55 was verified to be more tolerant than B73, and more commonly upregulated genes also showed higher expression levels in CIMBL55 than B73 under HS. These consistent results indicate that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among five inbred lines via comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at the expression levels. These candidate genes may confer thermotolerance in maize.
Collapse
Affiliation(s)
- Ming Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyue Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
| | - Luyao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhao P, Sun L, Zhang S, Jiao B, Wang J, Ma C. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage. Genes (Basel) 2024; 15:189. [PMID: 38397179 PMCID: PMC10887930 DOI: 10.3390/genes15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
High temperature around flowering has a serious impact on the growth and development of maize. However, few maize genes related to flowering under heat stress have been confirmed, and the regulatory mechanism is unclear. To reveal the molecular mechanism of heat tolerance in maize, two maize hybrids, ZD309 and XY335, with different heat resistance, were selected to perform transcriptome and metabolomics analysis at the flowering stage under heat stress. In ZD309, 314 up-regulated and 463 down-regulated differentially expressed genes (DEGs) were detected, while 168 up-regulated and 119 down-regulated DEGs were identified in XY335. By comparing the differential gene expression patterns of ZD309 and XY335, we found the "frontloaded" genes which were less up-regulated in heat-tolerant maize during high temperature stress. They included heat tolerance genes, which may react faster at the protein level to provide resilience to instantaneous heat stress. A total of 1062 metabolites were identified via metabolomics analysis. Lipids, saccharides, and flavonoids were found to be differentially expressed under heat stress, indicating these metabolites' response to high temperature. Our study will contribute to the identification of heat tolerance genes in maize, therefore contributing to the breeding of heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Pu Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Siqi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Chunhong Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| |
Collapse
|