1
|
Cheng C, Zhang F, Li L, Ni Z. Identification and Analysis of the Plasma Membrane H +-ATPase Gene Family in Cotton and Its Roles in Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3510. [PMID: 39771208 PMCID: PMC11728463 DOI: 10.3390/plants13243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Plant plasma membrane (PM) H+-ATPase functions as a proton-motive force by exporting cellular protons to establish a transmembrane chemical gradient of H+ ions and an accompanying electrical gradient. These gradients are crucial for plant growth and development and for plant responses to abiotic and biotic stresses. In this study, a comprehensive identification of the PM H+-ATPase gene family was conducted across four cotton species. Specifically, 14 genes were identified in the diploid species Gossypium arboreum and Gossypium raimondii, whereas 39 and 43 genes were identified in the tetraploid species Gossypium hirsutum and Gossypium barbadense, respectively. The characteristics of this gene family were subsequently compared and analyzed using bioinformatics. Chromosomal localization and collinearity analyses elucidated the distribution characteristics of this gene family within the cotton genomes. Gene structure and phylogenetic analyses demonstrated the conservation of this family across cotton species, whereas the examination of cis-acting elements in gene promoters highlighted their involvement in environmental stress and hormone response categories. An expression profile analysis revealed eight genes whose expression was upregulated under salt stress conditions, and quantitative real-time PCR results suggested that the cotton PM H+-ATPase genes may play crucial roles in conferring resistance to salt stress. These findings establish a robust foundation for subsequent investigations into the functions of cotton PM H+-ATPase genes and may offer valuable insights for selecting genes for resistance breeding programs.
Collapse
Affiliation(s)
- Cong Cheng
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (C.C.); (L.L.)
- College of Life Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Fengyuan Zhang
- College of Life Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Li Li
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (C.C.); (L.L.)
- College of Life Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Zhiyong Ni
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (C.C.); (L.L.)
- College of Life Science, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
2
|
Li P, Chen Y, Yang R, Sun Z, Ge Q, Xiao X, Yang S, Li Y, Liu Q, Zhang A, Xing B, Wu B, Du X, Liu X, Tang B, Gong J, Lu Q, Shi Y, Yuan Y, Peng R, Shang H. Co-Expression Network Analysis and Introgressive Gene Identification for Fiber Length and Strength Reveal Transcriptional Differences in 15 Cotton Chromosome Substitution Segment Lines and Their Upland and Sea Island Parents. PLANTS (BASEL, SWITZERLAND) 2024; 13:2308. [PMID: 39204744 PMCID: PMC11359254 DOI: 10.3390/plants13162308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have been applied to dissect the molecular mechanism of fiber development. In this study, 15 cotton chromosome segment substitution lines (CSSLs) with significant differences in FL and FS, together with their recurrent parental Gossypium hirsutum line CCRI45 and donor parent G. barbadense line Hai1, were chosen to conduct RNA-seq on developing fiber samples at 10 days post anthesis (DPA) and 20 DPA. Differentially expressed genes (DEGs) were obtained via pairwise comparisons among all 24 samples (each one with three biological repeats). A total of 969 DEGs related to FL-high, 1285 DEGs to FS-high, and 997 DEGs to FQ-high were identified. The functional enrichment analyses of them indicated that the GO terms of cell wall structure and ROS, carbohydrate, and phenylpropanoid metabolism were significantly enriched, while the GO terms of glucose and polysaccharide biosynthesis, and brassinosteroid and glycosylphosphatidylinositol metabolism could make great contributions to FL and FS formation, respectively. Weighted gene co-expressed network analyses (WGCNA) were separately conducted for analyzing FL and FS traits, and their corresponding hub DEGs were screened in significantly correlated expression modules, such as EXPA8, XTH, and HMA in the fiber elongation and WRKY, TDT, and RAC-like 2 during secondary wall thickening. An integrated analysis of these hub DEGs with previous QTL identification results successfully identified a total of 33 candidate introgressive DEGs with non-synonymous mutations between the Gh and Gb species. A common DEG encoding receptor-like protein kinase 1 was reported to likely participate in fiber secondary cell thickening regulation by brassionsteroid signaling. Such valuable information was conducive to enlightening the developing mechanism of cotton fiber and also provided an abundant gene pool for further molecular breeding.
Collapse
Affiliation(s)
- Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Rui Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- Xinjiang Production and Construction Corps Seventh Division Agricultural Research Institute, Kuitun 833200, China
| | - Zhihao Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qun Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Shuhan Yang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Yanfang Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Qiankun Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Aiming Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Baoguang Xing
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Bei Wu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Xue Du
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Xiaoyan Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
| | - Baomeng Tang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Quanwei Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
| | - Youlu Yuan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Y.); (Z.S.); (Q.G.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- Agricultural Technology Popularization Center of Kashgar, Kashgar 844000, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (P.L.); (Y.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Haihong Shang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Li C, Zhao J, Liu Z, Yang Y, Lai C, Ma J, Aierxi A. Comparative Transcriptomic Analysis of Gossypium hirsutum Fiber Development in Mutant Materials ( xin w 139) Provides New Insights into Cotton Fiber Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1127. [PMID: 38674536 PMCID: PMC11054599 DOI: 10.3390/plants13081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Cotton is the most widely planted fiber crop in the world, and improving cotton fiber quality has long been a research hotspot. The development of cotton fibers is a complex process that includes four consecutive and overlapping stages, and although many studies on cotton fiber development have been reported, most of the studies have been based on cultivars that are promoted in production or based on lines that are used in breeding. Here, we report a phenotypic evaluation of Gossypium hirsutum based on immature fiber mutant (xin w 139) and wild-type (Xin W 139) lines and a comparative transcriptomic study at seven time points during fiber development. The results of the two-year study showed that the fiber length, fiber strength, single-boll weight and lint percentage of xin w 139 were significantly lower than those of Xin W 139, and there were no significant differences in the other traits. Principal component analysis (PCA) and cluster analysis of the RNA-sequencing (RNA-seq) data revealed that these seven time points could be clearly divided into three different groups corresponding to the initiation, elongation and secondary cell wall (SCW) synthesis stages of fiber development, and the differences in fiber development between the two lines were mainly due to developmental differences after twenty days post anthesis (DPA). Differential expression analysis revealed a total of 5131 unique differentially expressed genes (DEGs), including 290 transcription factors (TFs), between the 2 lines. These DEGs were divided into five clusters. Each cluster functional category was annotated based on the KEGG database, and different clusters could describe different stages of fiber development. In addition, we constructed a gene regulatory network by weighted correlation network analysis (WGCNA) and identified 15 key genes that determined the differences in fiber development between the 2 lines. We also screened seven candidate genes related to cotton fiber development through comparative sequence analysis and qRT-PCR; these genes included three TFs (GH_A08G1821 (bHLH), GH_D05G3074 (Dof), and GH_D13G0161 (C3H)). These results provide a theoretical basis for obtaining an in-depth understanding of the molecular mechanism of cotton fiber development and provide new genetic resources for cotton fiber research.
Collapse
Affiliation(s)
- Chunping Li
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Zhongshan Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Yanlong Yang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Chengxia Lai
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Alifu Aierxi
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| |
Collapse
|
4
|
Gupta A, Kumar M, Zhang B, Tomar M, Walia AK, Choyal P, Saini RP, Potkule J, Burritt DJ, Sheri V, Verma P, Chandran D, Tran LSP. Improvement of qualitative and quantitative traits in cotton under normal and stressed environments using genomics and biotechnological tools: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111937. [PMID: 38043729 DOI: 10.1016/j.plantsci.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Maharishi Tomar
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Prince Choyal
- ICAR - Indian Institute of Soybean Research, Indore 452001, India
| | | | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Pooja Verma
- ICAR - Central Institute for Cotton Research, Nagpur, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerala, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|