1
|
Salehi H, Zhang L, Elbasan F, Zengin G, Arikan-Abdulveli B, Balci M, Yildiztugay A, Ozfidan-Konakci C, Yildiztugay E, Lucini L. The Influence of Bisphenol A on Parsley: A Biochemical and Metabolomics Integrative Perspective. PHYSIOLOGIA PLANTARUM 2025; 177:e70262. [PMID: 40351267 DOI: 10.1111/ppl.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
Bisphenol A (BPA), a widely used industrial chemical, poses environmental concerns due to its persistence and potential effects on plant systems. This study examines the impact of three BPA exposure levels on parsley plants, focusing on physiological, biochemical, and metabolomic responses. BPA exposure significantly shaped the plant's defense mechanisms, mainly through increased phenolic (up to 16.81%) and flavonoid (up to 37.94%) accumulation compared to the control group, which, in turn, enhanced antioxidant activity [up to 34% in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 51% in cupric reducing antioxidant capacity (CUPRAC)]. A moderate correlation between phenolic content and radical scavenging ability [R: 0.61 for DPPH and R: 0.44 for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)] highlights phenolics' role in mitigating BPA-induced oxidative stress. Low BPA concentrations stimulated gas exchange and photosynthesis, while higher levels (≥3 mg/L) disrupted these processes, causing physiological damage, especially in stomatal conductance (gs) and photochemical efficiency (Fv/Fo). Metabolomic profiling revealed concentration-dependent shifts in secondary metabolism, lipid biosynthesis, and stress-response pathways. At higher BPA levels, plants elicited defense mechanisms, such as flavonoids (rhamnetin, luteolin-7-O-β-D-glucronide, and quercetin-7-O-glucoside) and anthocyanin pathways, to tackle oxidative stress, though these systems became overwhelmed. Our findings show that while parsley can initially adapt to low BPA exposure, higher concentrations compromise its physiological and metabolic balance, threatening plant health and productivity.
Collapse
Affiliation(s)
- Hajar Salehi
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | | | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Aysegul Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Luigi Lucini
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
2
|
Liao RX, Chen YY, Li LM, Zhan RT, Chen YF. Metabolomic Profiling of Pogostemon cablin Reveals Disruption of Secondary Metabolite Biosynthesis Induced by Corynespora cassiicola Infection. Int J Mol Sci 2025; 26:3680. [PMID: 40332284 PMCID: PMC12027274 DOI: 10.3390/ijms26083680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Pogostemon cablin (patchouli) is an economically important aromatic plant widely used in the fragrance and pharmaceutical industries. This study investigates the effects of Corynespora leaf spot disease (CLSD) on the metabolic profiles and patchouli alcohol content of patchouli leaves. Utilizing gas chromatography-mass spectrometry (GC-MS), real-time PCR (qPCR), and comprehensive non-targeted metabolomic analyses (HS-SPME-GC-MS and LC-MS/MS), we compared diseased (LD-TJ) and healthy (CK) leaves. Results revealed a significant 51% reduction in patchouli alcohol content in CLSD-infected leaves, which was correlated with a 94% decrease in expression of the patchoulol synthase (PTS)-encoding gene (p < 0.01) and a 79% reduction in farnesyl pyrophosphate synthase (FPPS)-encoding gene expression (p < 0.05), both critical for terpenoid biosynthesis. Metabolomic analyses identified extensive disruptions in both volatile and non-volatile compounds, with the majority of differential abundance metabolites (DAMs) being downregulated. Key metabolic pathways, including beta-alanine metabolism and nicotinate/nicotinamide metabolism, were notably affected, indicating broader metabolic instability. Additionally, crucial transcription factors involved in terpenoid biosynthesis were significantly downregulated, indicating a potential mechanism by which C. cassiicola may compromise patchouli quality through modulation of host metabolic processes. These findings underscore the urgent need to develop disease-resistant P. cablin cultivars through genetic and metabolic engineering to enhance the sustainability and productivity of this valuable industrial crop.
Collapse
Affiliation(s)
- Ru-Xing Liao
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| | - Yang-Yang Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| | - Li-Min Li
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| | - Yu-Fan Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang X, Alami MM, Gong S, Cheng Q, Chen C, Li X, Zhong S, He Z, Chen D, Feng S, Chen S, Shu S. Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata. Metabolites 2025; 15:189. [PMID: 40137154 PMCID: PMC11943613 DOI: 10.3390/metabo15030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Pinellia ternata (Thunb.) Breit is a widely used medicinal herb in Traditional Chinese Medicine (TCM). Still, its sustainable cultivation is threatened by continuous cropping obstacles, which disrupt soil ecosystems, reduce yield, and degrade quality. Objectives: This study explores the potential of microbial inoculants to mitigate these challenges through integrated metabolomic and transcriptomic analyses. Methods: Soil samples from fields with and without continuous cropping issues were used to compare the effects of microbial inoculants on the secondary metabolism and gene expression of P. ternata. Results and Discussion: Metabolomic profiling identified 20,969 metabolites, with significant changes in lipid-like molecules (22.2%), organic acids (9.1%), and phenylpropanoids (7.0%) under microbial treatment. Notable increases in phenylalanine and caffeic acid levels were observed in microbial-inoculated plants. Correspondingly, transcriptomic analysis revealed the upregulation of phenylalanine ammonia-lyase (PAL) and other stress-related genes, confirming the metabolic shifts. Clustering and machine learning analyses highlighted the critical roles of metabolites and genes in enhancing plant resilience. Microbial inoculants improved secondary metabolite production. Implications: These findings provide valuable insights into the mechanisms of microbial-plant interactions and establish a sustainable approach for cultivating P. ternata, addressing the challenges of continuous cropping while improving crop productivity and quality.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Mohammad Murtaza Alami
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Shuqi Gong
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Qinglin Cheng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Chaoqun Chen
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Xinghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Shumei Zhong
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430070, China
| | - Zhigang He
- Hubei South Crown Chinese Herbs Science & Technology Co., Ltd., Qianjiang 433131, China
| | - Dilin Chen
- Planting Industry Management Office, Department of Agriculture and Rural Affairs in Hubei Province, Wuhan 430070, China
| | - Shengqiu Feng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Shenghu Chen
- Fruit and Tea Industry Management Office, Department of Agriculture and Rural Affairs in Hubei Province, Wuhan 430070, China
| | - Shaohua Shu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| |
Collapse
|
4
|
Liu S, Yang J, Yin C, Mao S, Cheng Q, Yan J, Jiang C, Wang X, Liang X, Zhao H. Identification of salt-responsive genetic variants using cross-condition multi-omics association analysis in maize. PLANT COMMUNICATIONS 2025; 6:101219. [PMID: 39659013 PMCID: PMC11956082 DOI: 10.1016/j.xplc.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Songyu Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Yang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Can Yin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shiya Mao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qian Cheng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jun Yan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Barreda L, Boutet S, De Vos D, Boulard C, Grain D, Lepiniec L, Corso M. Specialized metabolome and transcriptome atlas of developing Arabidopsis thaliana seed under warm temperatures. Sci Data 2025; 12:306. [PMID: 39979379 PMCID: PMC11842559 DOI: 10.1038/s41597-025-04563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
Seed development, which depends on parent plants genetic background and mother plant environmental conditions, is a major component determining seed composition. Seed quality is a main agricultural concern, impacting both food and non-food applications, while also playing a central role in biodiversity conservation and environment protection. Climate change, in particular the emergence of extremely high temperatures, constitute a critical global threat to agriculture. Specialized metabolites (SMs) play crucial roles in the interactions of plants and seeds with their environments. Several SMs are known to be protective compounds involved in seed stress responses, thus impacting their quality. In this study, we performed untargeted metabolomic (LC-MS/MS) and transcriptomic (RNA-Seq) analyses of Arabidopsis thaliana seeds harvested at six developmental stages (Globular, Transition, Torpedo, Bent cotyledon, Mature green and Dry seed), and developed under control and warm temperature conditions. Those data provide an original and valuable resource that could be used to identify SMs and genes involved in seed heat stress responses and for the study of their regulation and functions during seed development.
Collapse
Affiliation(s)
- Léa Barreda
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France
| | - Stéphanie Boutet
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France
| | - Delphine De Vos
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France
| | - Céline Boulard
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France
| | - Damaris Grain
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France
| | - Loïc Lepiniec
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France
| | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78026, Versailles, France.
| |
Collapse
|
7
|
Cimmino L, Staiti A, Carputo D, Docimo T, D’Amelia V, Aversano R. Adaptable Alchemy: Exploring the Flexibility of Specialized Metabolites to Environmental Perturbations Through Post-Translational Modifications (PTMs). PLANTS (BASEL, SWITZERLAND) 2025; 14:489. [PMID: 39943051 PMCID: PMC11821190 DOI: 10.3390/plants14030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Plants are subjected to various stresses during the growth process, including biotic stresses, as well as abiotic stresses such as temperature, drought, salt, and heavy metals. To cope with these biotic and abiotic adversities, plants have evolved complex regulatory mechanisms during their long-term environmental adaptations. In a suddenly changing environment, protein modifiers target other proteins to induce post-translational modification (PTM) in order to maintain cell homeostasis and protein biological activity in plants. PTMs modulate the activity of enzymes and transcription factors in their respective metabolic pathways, enabling plants to produce essential compounds for their survival under stress conditions. Examples of post-translational mechanisms include phosphorylation, ubiquitination, glycosylation, acetylation, protein-protein interactions, and targeted protein degradation. Furthermore, the role of histone modifications in regulating secondary metabolism deserves attention due to its potential impact on heritability and its contribution to stress tolerance. Understanding the epigenetic aspect of these modifications can provide valuable insights into the mechanisms underlying stress response. In this context, also examining PTMs that impact the biosynthesis of secondary metabolites is meaningful. Secondary metabolites encompass a wide range of compounds such as flavonoids, alkaloids, and terpenoids. These secondary metabolites play a crucial role in plant defense against herbivores, pathogens, and oxidative stress. In this context, it is imperative to understand the contribution of secondary metabolism to plant tolerance to abiotic stresses and how this understanding can be leveraged to improve long-term survival. While many studies have focused on the transcriptional regulation of these metabolites, there is a growing interest in understanding various changes in PTMs, such as acetylation, glycosylation, and phosphorylation, that are able to modulate plants' response to environmental conditions. In conclusion, a comprehensive exploration of post-translational mechanisms in secondary metabolism can enhance our understanding of plant responses to abiotic stress. This knowledge holds promise for future applications in genetic improvement and breeding strategies aimed at increasing plant resilience to environmental challenges.
Collapse
Affiliation(s)
- Luca Cimmino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Annalisa Staiti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Teresa Docimo
- Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy, Via Università 133, 80055 Portici, Italy
| | - Vincenzo D’Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| |
Collapse
|
8
|
Oyarce P, Xiao TT, Henkel C, Frederiksen SF, Gonzalez-Kise JK, Smet W, Wang JY, Al-Babili S, Blilou I. Microscopy and spatial-metabolomics identify tissue-specific metabolic pathways uncovering salinity and drought tolerance mechanisms in Avicennia marina and Phoenix dactylifera roots. Sci Rep 2025; 15:1076. [PMID: 39775192 PMCID: PMC11707284 DOI: 10.1038/s41598-025-85416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored. Here, we integrate tissue imaging with spatial metabolomics to uncover shared and distinct adaptive features in these species. We found that mangrove roots accumulate suberin and lignin in meristematic tissues, this is unlike other plant species, where only the differentiation zones contain these compounds. Our metabolomic analysis shows that date palm roots are enriched in metabolites involved in amino acid biosynthesis, whereas compounds involved in lignin and suberin production were more abundant in mangrove roots. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed tissue- and species-specific metabolite distributions in root tissues. We identified common osmoprotectants accumulating in the exodermis/epidermis of date palm and mangrove root meristems, along with a unique metabolite highly abundant in the inner cortex of date palm roots. These findings provide valuable insights into stress adaptation pathways and highlight key tissue types involved in root stress response.
Collapse
Affiliation(s)
- Paula Oyarce
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Signe Frost Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Jose Kenyi Gonzalez-Kise
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Wouter Smet
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jian You Wang
- BESE Division, BioActives Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- BESE Division, BioActives Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Liu X, Elzenga JTM, Venema JH, Tiedge KJ. Thriving in a salty future: morpho-anatomical, physiological and molecular adaptations to salt stress in alfalfa (Medicago sativa L.) and other crops. ANNALS OF BOTANY 2024; 134:1113-1130. [PMID: 39215647 PMCID: PMC11688534 DOI: 10.1093/aob/mcae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND With soil salinity levels rising at an alarming rate, accelerated by climate change and human interventions, there is a growing need for crop varieties that can grow on saline soils. Alfalfa (Medicago sativa) is a cool-season perennial leguminous crop, commonly grown as forage, biofuel feedstock and soil conditioner. It demonstrates significant potential for agricultural circularity and sustainability, for example by fixing nitrogen, sequestering carbon and improving soil structures. Although alfalfa is traditionally regarded as a moderately salt-tolerant species, modern alfalfa varieties display specific salt-tolerance mechanisms, which could be used to pave its role as a leading crop able to grow on saline soils. SCOPE Alfalfa's salt tolerance underlies a large variety of cascading biochemical and physiological mechanisms. These are partly enabled by its complex genome structure and out-crossing nature, but which entail impediments for molecular and genetic studies. This review first summarizes the general effects of salinity on plants and the broad-ranging mechanisms for dealing with salt-induced osmotic stress, ion toxicity and secondary stress. Second, we address the defensive and adaptive strategies that have been described for alfalfa, such as the plasticity of alfalfa's root system, hormonal crosstalk for maintaining ion homeostasis, spatiotemporal specialized metabolite profiles and the protection of alfalfa-rhizobia associations. Finally, bottlenecks for research of the physiological and molecular salt-stress responses as well as biotechnology-driven improvements of salt tolerance are identified and discussed. CONCLUSION Understanding morpho-anatomical, physiological and molecular responses to salinity is essential for the improvement of alfalfa and other crops in saline land reclamation. This review identifies potential breeding targets for enhancing the stability of alfalfa performance and general crop robustness for rising salt levels as well as to promote alfalfa applications in saline land management.
Collapse
Affiliation(s)
- Xu Liu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J Theo M Elzenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Henk Venema
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Kira J Tiedge
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Martínez-Esteso MJ, Morante-Carriel J, Samper-Herrero A, Martínez-Márquez A, Sellés-Marchart S, Nájera H, Bru-Martínez R. Proteomics: An Essential Tool to Study Plant-Specialized Metabolism. Biomolecules 2024; 14:1539. [PMID: 39766246 PMCID: PMC11674799 DOI: 10.3390/biom14121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest. Here, we focus on the proteomic approaches and strategies that help with the study of plant-specialized metabolism, including the: (i) discovery of key enzymes and the clarification of their biosynthetic pathways; (ii) study of the interconnection of both primary (providers of carbon and energy for SPM production) and specialized (secondary) metabolism; (iii) study of plant responses to biotic and abiotic stress; (iv) study of the regulatory mechanisms that direct their biosynthetic pathways. Proteomics, as exemplified in this review by the many studies performed to date, is a powerful tool that forms part of omics-driven research. The proteomes analysis provides an additional unique level of information, which is absent from any other omics studies. Thus, an integrative analysis, considered versus a single omics analysis, moves us more closely toward a closer interpretation of real cellular processes. Finally, this work highlights advanced proteomic technologies with immediate applications in the field.
Collapse
Affiliation(s)
- María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico;
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
11
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
12
|
Wu M, Xu Q, Tang T, Li X, Pan Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389207. [PMID: 38916029 PMCID: PMC11194374 DOI: 10.3389/fpls.2024.1389207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Rapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tingting Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Zhao H, Masood HA, Muhammad S. Unveiling the aesthetic secrets: exploring connections between genetic makeup, chemical, and environmental factors for enhancing/improving the color and fragrance/aroma of Chimonanthus praecox. PeerJ 2024; 12:e17238. [PMID: 38650650 PMCID: PMC11034496 DOI: 10.7717/peerj.17238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Floral color and scent profiles vary across species, geographical locations, and developmental stages. The exclusive floral color and fragrance of Chimonanthus praecox is contributed by a range of endogenous chemicals that distinguish it from other flowers and present amazing ornamental value. This comprehensive review explores the intricate interplay of environmental factors, chemicals and genes shaping the flower color and fragrance of Chimonanthus praecox. Genetic and physiological factors control morpho-anatomical attributes as well as pigment synthesis, while environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Specific genes control pigment synthesis, and environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Physiological processes including plant hormone contribute to flower color and fragrance. Hormones, notably ethylene, exert a profound influence on varioustraits. Pigment investigations have spotlighted specific flavonoids, including kaempferol 3-O-rutinoside, quercetin, and rutin. Red tepals exhibit unique composition with cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside being distinctive components. Elucidating the molecular basis of tepal color variation, particularly in red and yellow varieties, involves the identification of crucial regulatory genes. In conclusion, this review unravels the mysteries of Chimonanthus praecox, providing a holistic understanding of its flower color and fragrance for landscape applications. This comprehensive review uniquely explores the genetic intricacies, chemical and environmental influences that govern the mesmerizing flower color and fragrance of Chimonanthus praecox, providing valuable insights for its landscape applications. This review article is designed for a diverse audience, including plant geneticists, horticulturists, environmental scientists, urban planners, and students, offering understandings into the genetic intricacies, ecological significance, and practical applications of Chimonanthus praecox across various disciplines. Its appeal extends to professionals and enthusiasts interested in plant biology, conservation, and industries dependent on unique floral characteristics.
Collapse
Affiliation(s)
- Haoyu Zhao
- MEU Research Unit, Middle East University, Amman, Jordan
- Faculty of Social and Cultural Communications, Belarusian State University, Minsk, Belarus
| | | | - Sher Muhammad
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|