1
|
Xu C, Zhang J, Li W, Guo J. The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:17. [PMID: 39850652 PMCID: PMC11751289 DOI: 10.1007/s11032-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense. In the last decades, several subunits of the exocyst complex have been reported to be involved in plant defense, especially Exo70s. This comprehensive review focuses on the functions of the exocyst Exo70s in plant immunity, particularly in recognizing pathogen and pest signatures. We discussed Exo70's interactions with immune receptors and other immune-related proteins, its symbiotic relationships with microbes, and its role in non-host resistance. Finally, we discussed the future engineering breeding of crops with resistance to pathogens and pests based on our current understanding of Exo70s.
Collapse
Affiliation(s)
- Chunxue Xu
- Department of Early Childhood Education, Wuhan City Polytechnic, Wuhan, 430072 China
| | - Jing Zhang
- School of Agricultural Science, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Wenqian Li
- Department of Early Childhood Education, Wuhan City Polytechnic, Wuhan, 430072 China
| | - Jianping Guo
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
2
|
Yu B, Geng M, Xue Y, Yu Q, Lu B, Liu M, Shao Y, Li C, Xu J, Li J, Hu W, Tang H, Li P, Liu Q, Jing S. Combined miRNA and mRNA sequencing reveals the defensive strategies of resistant YHY15 rice against differentially virulent brown planthoppers. FRONTIERS IN PLANT SCIENCE 2024; 15:1366515. [PMID: 38562566 PMCID: PMC10982320 DOI: 10.3389/fpls.2024.1366515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Introduction The brown planthopper (BPH) poses a significant threat to rice production in Asia. The use of resistant rice varieties has been effective in managing this pest. However, the adaptability of BPH to resistant rice varieties has led to the emergence of virulent populations, such as biotype Y BPH. YHY15 rice, which carries the BPH resistance gene Bph15, exhibits notable resistance to biotype 1 BPH but is susceptible to biotype Y BPH. Limited information exists regarding how resistant rice plants defend against BPH populations with varying levels of virulence. Methods In this study, we integrated miRNA and mRNA expression profiling analyses to study the differential responses of YHY15 rice to both avirulent (biotype 1) and virulent (biotype Y) BPH. Results YHY15 rice demonstrated a rapid response to biotype Y BPH infestation, with significant transcriptional changes occurring within 6 hours. The biotype Y-responsive genes were notably enriched in photosynthetic processes. Accordingly, biotype Y BPH infestation induced more intense transcriptional responses, affecting miRNA expression, defenserelated metabolic pathways, phytohormone signaling, and multiple transcription factors. Additionally, callose deposition was enhanced in biotype Y BPH-infested rice seedlings. Discussion These findings provide comprehensive insights into the defense mechanisms of resistant rice plants against virulent BPH, and may potentially guide the development of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Mengjia Geng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yu Xue
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingqing Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Bojie Lu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Miao Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yuhan Shao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chenxi Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jingang Xu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jintao Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hengmin Tang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Peng Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shengli Jing
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|