1
|
Smirnov A, Makarenko M, Yunusova A. Transgene Mapping in Animals: What to Choose? Int J Mol Sci 2025; 26:4705. [PMID: 40429848 PMCID: PMC12111812 DOI: 10.3390/ijms26104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The phenomenal progress in biotechnology and genomics is both inspiring and overwhelming-a classic curse of choice, particularly when it comes to selecting methods for mapping transgene DNA integration sites. Transgene localization remains a crucial task for the validation of transgenic mouse or other animal models generated by pronuclear microinjection. Due to the inherently random nature of DNA integration, reliable characterization of the insertion site is essential. Over the years, a vast number of mapping methods have been developed, and new approaches continue to emerge, making the choice of the most suitable technique increasingly complex. Factors such as cost, required reagents, and the nature of the generated data require careful consideration. In this review, we provide a structured overview of current transgene mapping techniques, which we have broadly classified into three categories: classic PCR-based methods (such as inverse PCR and TAIL-PCR), next-generation sequencing with target enrichment, and long-read sequencing platforms (PacBio and Oxford Nanopore). To aid in decision-making, we include a comparative table summarizing approximate costs for the methods. While each approach has its own advantages and limitations, we highlight our top four recommended methods, which we believe offer the best balance of cost-effectiveness, reliability, and simplicity for identifying transgene integration sites.
Collapse
Affiliation(s)
- Alexander Smirnov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Maksim Makarenko
- Department of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius Federal Territory, Sochi 354340, Russia
| | - Anastasia Yunusova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Gracia-Rodriguez C, Martínez-Medina AE, Torres-Cosio L, Lopez-Ortiz C, Nimmakayala P, Luévanos-Escareño MP, Hernández-Almanza AY, Castro-Alonso MJ, Sosa-Martínez JD, Reddy UK, Balagurusamy N. Can the molecular and transgenic breeding of crops be an alternative and sustainable technology to meet food demand? Funct Integr Genomics 2025; 25:83. [PMID: 40205022 DOI: 10.1007/s10142-025-01594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The gradual increase in the worldwide population represents various challenges, and one of the most alarming being the food demand. Historically technological advances led to the development of crops that meets the requirements and demands. Currently, molecular breeding unlocks the genetic potential of crops for their improvement, positioning it as a key technology for the development of new crops. The implementation of OMICs sciences, such spatial and single cell transcriptomics is providing a large and precise information, which can be exploited for crop improvement related to increasing yield, improving the nutritional value; designing new strategies for diseases resistance and management and for conserving biodiversity. Furthermore, the use of new technologies such CRISPR/CAS9 brought us the ability to modify the selected regions of the genome to select the superior's genotypes at a short time and the use of artificial intelligence aid in the analysis of big data generated by OMICS sciences. On the other hand, the application of molecular improvement technologies open up discussion on global regulatory measures, the socio-economic and socio-ethics, as the frameworks on its global regulation and its impact on the society create the public perception on its acceptance. In this review, the use and impact of OMICs sciences and genetic engineering in crops development, the regulatory measures, the socio-economic impact and as well as the mediatic information on genetically modified crops worldwide is discussed along with comprehensive insights on the potential of molecular plant breeding as an alternative and sustainable technology to meet global food demand.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Angela Elena Martínez-Medina
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Liliana Torres-Cosio
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Miriam Paulina Luévanos-Escareño
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Ayerim Yedid Hernández-Almanza
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - María José Castro-Alonso
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Jazel Doménica Sosa-Martínez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico.
| |
Collapse
|