1
|
Amin NR, Nebel MB, Chen HW, Busch TA, Rosenthal ED, Mostofsky S, Suskauer SJ, Svingos A. Patterns of Change in Functional Connectivity and Motor Performance Are Different in Youth Recently Recovered from Concussion. Neurotrauma Rep 2025; 6:53-67. [PMID: 39882312 PMCID: PMC11773176 DOI: 10.1089/neur.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Adolescents who have sustained a concussion or mild traumatic brain injury (mTBI) are prone to repeat injuries which may be related to subtle motor deficits persisting after clinical recovery. Cross-sectional research has found that these deficits are associated with altered functional connectivity among somatomotor, dorsal attention, and default mode networks. However, our understanding of how these brain-behavior relationships change over time after clinical recovery is limited. In this study, we examined categorical and dimensional trajectories of functional connectivity and subtle motor performance in youth clinically recovered from mTBI and never-injured controls (10-17 years). All participants completed task-based and resting-state functional magnetic resonance imaging scans and the Physical and Neurological Examination of Subtle Signs (PANESS) at initial and 3-month follow-up visits. We examined somatomotor-dorsal attention and somatomotor-default mode network connectivity and their association with PANESS performance. Compared with controls, a larger proportion of youth recovered from mTBI showed increases in somatomotor-dorsal attention functional connectivity over time; in contrast, there were no differences in somatomotor-default mode connectivity trajectories between youth recovered from mTBI and controls. Relative to controls, youth recovered from mTBI who showed greater increases in somatomotor-dorsal attention connectivity over time also completed motor tasks more slowly at the 3-month compared with the initial visit. Collectively, these findings suggest that longitudinal changes in somatomotor-dorsal attention functional connectivity may be associated with lingering motor learning deficits after clinical recovery from pediatric mTBI. Further research is necessary to understand how trajectories of functional connectivity and motor performance can inform individual-level outcomes, for instance, susceptibility to future injuries in both youth who are never injured and those clinically recovered from mTBI.
Collapse
Affiliation(s)
- Nishta R. Amin
- Brain Injury Clinical Research Center, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Hsuan-Wei Chen
- Brain Injury Clinical Research Center, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Tyler A. Busch
- Brain Injury Clinical Research Center, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Elizabeth D. Rosenthal
- Brain Injury Clinical Research Center, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Stacy J. Suskauer
- Brain Injury Clinical Research Center, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adrian Svingos
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Peng L, Li J, Xu L, Zhang Z, Wang Z, Zhong X, Wang L, Shao Y, Yue Y. Reduced visual and middle temporal gyrus activity correlates with years of exercise in athletes using resting-state fMRI. J Neuroimaging 2025; 35:e13249. [PMID: 39501905 DOI: 10.1111/jon.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Different types of physical training can lead to changes in brain activity and function, and these changes can vary depending on the type of training. However, it remains unclear whether there are commonalities in how different types of training affect brain activity and function. The purpose of this study is to compare the brain activity states of professional athletes with those of ordinary university students and to explore the relationship between training and differences in brain activity states. METHODS This study primarily utilizes resting-state MRI and the degree centrality metric to investigate spontaneous brain activity in 86 high-level athletes with extensive training and 74 age- and gender-matched nonathletes. Additionally, a correlation analysis between brain activity in relevant regions and years of training was conducted. RESULTS The analysis revealed that, compared to nonathletes, high-level athletes exhibited reduced activity in the Calcarine (a visual area) and Middle Temporal Gyrus. Furthermore, changes in the activity of the Calcarine and Middle Temporal Gyrus were significantly correlated with the number of years of professional training. CONCLUSIONS The study results indicate that long-term physical training is associated with changes in brain activity in athletes, providing insights into the neural mechanisms underlying behavioral performance in professional athletes.
Collapse
Affiliation(s)
- Lei Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jiyuan Li
- Department of Magnetic Resonance Imaging, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Zexuan Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yunlong Yue
- Department of Magnetic Resonance Imaging, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Liu W, Ye S, Cao Y, Li Y, Gao Y, Zhao M, Wang Y, Yun B, Luo L, Zheng C, Jia X. Brain local stability and network flexibility of table tennis players: a 7T MRI study. Cereb Cortex 2024; 34:bhae264. [PMID: 38937078 DOI: 10.1093/cercor/bhae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Table tennis players have adaptive visual and sensorimotor networks, which are the key brain regions to acquire environmental information and generate motor output. This study examined 20 table tennis players and 21 control subjects through ultrahigh field 7 Tesla magnetic resonance imaging. First, we measured percentage amplitude of fluctuation across five different frequency bands and found that table tennis players had significantly lower percentage amplitude of fluctuation values than control subjects in 18 brain regions, suggesting enhanced stability of spontaneous brain fluctuation amplitudes in visual and sensorimotor networks. Functional connectional analyses revealed increased static functional connectivity between two sensorimotor nodes and other frontal-parietal regions among table tennis players. Additionally, these players displayed enhanced dynamic functional connectivity coupled with reduced static connectivity between five nodes processing visual and sensory information input, and other large-scale cross-regional areas. These findings highlight that table tennis players undergo neural adaptability through a dual mechanism, characterized by global stability in spontaneous brain fluctuation amplitudes and heightened flexibility in visual sensory networks. Our study offers novel insights into the mechanisms of neural adaptability in athletes, providing a foundation for future efforts to enhance cognitive functions in diverse populations, such as athletes, older adults, and individuals with cognitive impairments.
Collapse
Affiliation(s)
- Wenming Liu
- Department of Sport Science, College of Education, Zhejiang University, 310029 Hangzhou, China
| | - Shuqin Ye
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yuting Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yuyang Li
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, 321000 Jinhua, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, 154007 Jiamusi, China
| | - Bing Yun
- Department of Public Physical and Art Education, Zhejiang University, 310029 Hangzhou, China
| | - Le Luo
- Hangzhou Wuyunshan Hospital, 310018 Hangzhou, China
| | - Chanying Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
| |
Collapse
|
4
|
Qi Y, Zhao M, Yan Z, Jia X, Wang Y. Altered spontaneous regional brain activity in ventromedial prefrontal cortex and visual area of expert table tennis athletes. Brain Imaging Behav 2024; 18:529-538. [PMID: 38246897 DOI: 10.1007/s11682-023-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Sports training may lead to functional changes in the brain, and different types of sports, including table tennis, have different influences on these changes. However, the effects of long-term table tennis practice on brain function in expert athletes are largely undefined. Here, we investigated spontaneous regional brain activity characteristics of expert table tennis athletes by using resting-state functional magnetic resonance imaging to compare differences between 25 athletes and 33 age- and sex-matched non-athletes. We analyzed four metrics-amplitude of low-frequency fluctuation (ALFF), fractional ALFF, regional homogeneity, and degree centrality-because together they identify functional changes in the brain with greater sensitivity than a single indicator and may more comprehensively describe regional functional changes. Additional statistical analysis was conducted to assess whether any correlation existed between brain activity and years of table tennis training for athletes. Results show that compared with non-athletes, table tennis athletes showed altered spontaneous regional brain activity in the ventromedial prefrontal cortex and the calcarine sulcus, a visual area. Furthermore, the functional changes in the calcarine sulcus showed a significant correlation with the number of years of expert sports training. Despite the relatively small sample size, these results indicated that the regional brain function of table tennis athletes was associated with sports training-related changes, providing insights for understanding the neural mechanisms underlying the expert performance of athletes.
Collapse
Affiliation(s)
- Yapeng Qi
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, No. 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, China
| | - Zhurui Yan
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, No. 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, China.
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
5
|
Zhang JP, Zhu P, Cai ZL, Xing XX, Wu JJ, Zheng MX, Hua XY, Gong BM, Xu JG. Sports promote brain evolution: a resting-state fMRI study of volleyball athlete. Front Sports Act Living 2024; 6:1393988. [PMID: 38756186 PMCID: PMC11098564 DOI: 10.3389/fspor.2024.1393988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Background Long-term skill learning can lead to structure and function changes in the brain. Different sports can trigger neuroplasticity in distinct brain regions. Volleyball, as one of the most popular team sports, heavily relies on individual abilities such as perception and prediction for high-level athletes to excel. However, the specific brain mechanisms that contribute to the superior performance of volleyball athletes compared to non-athletes remain unclear. Method We conducted a study involving the recruitment of ten female volleyball athletes and ten regular female college students, forming the athlete and novice groups, respectively. Comprehensive behavioral assessments, including Functional Movement Screen and audio-visual reaction time tests, were administered to both groups. Additionally, resting-state magnetic resonance imaging (MRI) data were acquired for both groups. Subsequently, we conducted in-depth analyses, focusing on the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the brain for both the athlete and novice groups. Results No significant differences were observed in the behavioral data between the two groups. However, the athlete group exhibited noteworthy enhancements in both the ALFF and ReHo within the visual cortex compared to the novice group. Moreover, the functional connectivity between the visual cortex and key brain regions, including the left primary sensory cortex, left supplementary motor cortex, right insula, left superior temporal gyrus, and left inferior parietal lobule, was notably stronger in the athlete group than in the novice group. Conclusion This study has unveiled the remarkable impact of volleyball athletes on various brain functions related to vision, movement, and cognition. It indicates that volleyball, as a team-based competitive activity, fosters the advancement of visual, cognitive, and motor skills. These findings lend additional support to the early cultivation of sports talents and the comprehensive development of adolescents. Furthermore, they offer fresh perspectives on preventing and treating movement-related disorders. Trial registration Registration number: ChiCTR2400079602. Date of Registration: January 8, 2024.
Collapse
Affiliation(s)
- Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering ResearchCenter of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Ping Zhu
- Department of Physical Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng-Liang Cai
- Department of Physical Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Engineering ResearchCenter of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Engineering ResearchCenter of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Engineering ResearchCenter of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering ResearchCenter of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo-Min Gong
- Department of Physical Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering ResearchCenter of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
6
|
Gao Q, Luo N, Liang M, Zhou W, Li Y, Li R, Hu X, Zou T, Wang X, Yu J, Leng J, Chen H. A Stepwise Multivariate Granger Causality Method for Constructing Hierarchical Directed Brain Functional Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4974-4984. [PMID: 36099216 DOI: 10.1109/tnnls.2022.3202535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The directed brain functional network construction gives us the new insights into the relationships between brain regions from the causality point of view. The Granger causality analysis is one of the powerful methods to model the directed network. The complex brain network is also hierarchically constructed, which is particularly suited to facilitate segregated functions and the global integration of the segregated functions. Therefore, it is of great interest to explore new approach to model the hierarchical architecture of the directed network. In the present study, we proposed a new approach, namely, stepwise multivariate Granger causality (SMGC), considering both the directed and hierarchical features of brain functional network to explore the stepwise causal relationship in the network. The simulation study demonstrated that the diverse and complex hierarchical organization could be embedded in the apparently simple directed network. The proposed SMGC method could capture the multiple hierarchy of the directed network. When applying to the real functional magnetic resonance imaging (fMRI) datasets, the core triple resting-state networks in human brain showed within-network directed connections in the first-level directed network and rich and diverse between-network pathways in the second-level hierarchical network. The default mode network (DMN) had a prominent role in the resting-state acting as both the causal source and the important relay station. Further exploratory research on the adaption of directed hierarchical network in athletes suggested the enhanced bidirectional communication between the DMN and the central executive network (CEN) and the enhanced directed connections from the salience network (SN) to the CEN in the athlete group. The SMGC approach is capable of capturing the hierarchical architecture of the brain directed functional network, which refreshes the new stepwise causal relationship in the directed network. This might shed light on the potential application for exploring the altered hierarchical organization of brain directed network in neuropsychiatric disorders.
Collapse
|
7
|
Dong X, Gui X, Klich S, Zhu L, Chen D, Sun Z, Shi Y, Chen A. The effects of football juggling learning on executive function and brain functional connectivity. Front Hum Neurosci 2024; 18:1362418. [PMID: 38516307 PMCID: PMC10954781 DOI: 10.3389/fnhum.2024.1362418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
This study aimed to explore the relationship between motor skill learning and executive function (EF), with an emphasis on the potential effects of football juggling learning. A randomized controlled trial involving 111 participants aged 17-19 years was conducted. Participants were randomly assigned to either the football juggling learning (FJL) group or a control group. The FJL group underwent 70 sessions of football juggling learning, while the control group engaged in their normal daily activities without any exercise intervention during the same time frame. Both groups were assessed for EF performance and underwent functional magnetic resonance imaging (fMRI) scans before and after the experiment. The executive function test included three tasks, namely, inhibition, working memory, and shifting. The results showed significant improvement in inhibition and shifting in both groups, and the FJL group showed greater improvement in these aspects of EF compared to the control group. Additionally, in comparison to the control group, the FJL group exhibited increased functional connectivity within the frontal, temporal, and cerebellar regions from the pre-test to the post-test. Notably, enhanced functional connectivity between the right superior temporal gyrus (posterior division) and left cerebellum 6 was identified in the FJL group and was associated with improved EF performance induced by football juggling learning. These findings shed light on the potential causal relationship between motor skill learning, EF, and brain plasticity. Importantly, our study provides preliminary evidence supporting the use of motor skill learning, such as football juggling, as a potential avenue for cognitive enhancement.
Collapse
Affiliation(s)
| | - Xiang Gui
- Yangzhou University, Yangzhou, China
| | - Sebastian Klich
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Lina Zhu
- Yangzhou University, Yangzhou, China
| | | | | | - Yifan Shi
- Yangzhou University, Yangzhou, China
| | | |
Collapse
|
8
|
Li Y, Zhao M, Cao Y, Gao Y, Wang Y, Yun B, Luo L, Liu W, Zheng C. Static and dynamic resting-state brain activity patterns of table tennis players in 7-Tesla MRI. Front Neurosci 2023; 17:1202932. [PMID: 37521699 PMCID: PMC10375049 DOI: 10.3389/fnins.2023.1202932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Table tennis involves quick and accurate motor responses during training and competition. Multiple studies have reported considerably faster visuomotor responses and expertise-related intrinsic brain activity changes among table tennis players compared with matched controls. However, the underlying neural mechanisms remain unclear. Herein, we performed static and dynamic resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 20 table tennis players and 21 control subjects using 7T ultra-high field imaging. We calculated the static and dynamic amplitude of low-frequency fluctuations (ALFF) of the two groups. The results revealed that table tennis players exhibited decreased static ALFF in the left inferior temporal gyrus (lITG) compared with the control group. Voxel-wised static functional connectivity (sFC) and dynamic functional connectivity (dFC) analyses using lITG as the seed region afforded complementary and overlapping results. The table tennis players exhibited decreased sFC in the right middle temporal gyrus and left inferior parietal gyrus. Conversely, they displayed increased dFC from the lITG to prefrontal cortex, particularly the left middle frontal gyrus, left superior frontal gyrus-medial, and left superior frontal gyrus-dorsolateral. These findings suggest that table tennis players demonstrate altered visuomotor transformation and executive function pathways. Both pathways involve the lITG, which is a vital node in the ventral visual stream. These static and dynamic analyses provide complementary and overlapping results, which may help us better understand the neural mechanisms underlying the changes in intrinsic brain activity and network organization induced by long-term table tennis skill training.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yuting Cao
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yadan Wang
- College of Information and Electronic Technology, Jiamusi University, Jiamusi, China
| | - Bing Yun
- Department of Public Physical and Art Education, Zhejiang University, Hangzhou, China
| | - Le Luo
- Hangzhou Wuyunshan Hospital, Hangzhou, China
| | - Wenming Liu
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou, China
| | - Chanying Zheng
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang X, Xie W, Liu Y, Li M, Lin J, Yin W, Yang L, Li P, Sun Y, Li T, Liu H, Ma H, Zhang J. Brain Structural and Functional Alterations in Native Tibetans Living at High Altitude. Neuroscience 2023; 520:134-143. [PMID: 36716913 DOI: 10.1016/j.neuroscience.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Tibetans have adapted to high altitude environments. However, the genetic effects in their brains have not been identified. Twenty-five native Tibetans living in Lhasa (3650 m) were recruited for comparison with 20 Han immigrants who originated from lowlands and had been living in Lhasa for two years. The physiological characteristics, brain structure and neuronal spontaneous activity were investigated. Compared with Han immigrants, Tibetans showed higher peripheral oxygen saturation (SpO2), and lower heart rate, red blood cell counts, hematocrit, and hemoglobin. Tibetans showed increased gray matter volume in the visual cortex, hippocampus, and rectus; increased the amplitudes of low-frequency fluctuations (ALFF) values in the left putamen and left fusiform gyrus; and decreased voxel-mirrored homotopic connectivity (VMHC) values in the precentral gyrus. Moreover, Tibetans have decreased functional connectivity (FC) between the left precentral gyrus and the frontal gyrusand right precuneus. In Tibetans and Han immigrants, hemoglobin and hematocrit were negatively correlated with total gray matter volume in males, SpO2 was also positively correlated with ALFF in the left fusiform gyrus, while hemoglobin, and hematocrit were positively correlated with VMHC in the precentral gyrus and FC in the precentral gyrus with other brain regions, SpO2 was also found to be negatively correlated with VMHC in the precentral gyrus, and hemoglobin and hematocrit were negatively correlated with ALFF in the left putamen and left fusiform gyrus. In summary, genetic mutations may result in modulation of some brain regions, which was further confirmed by the identification of correlations with hemoglobin and hematocrit in these regions.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Weiwei Xie
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Minglu Li
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Lihui Yang
- Department of Endocrinology, Tibet Autonomous Region People's Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Pengji Li
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Ying Sun
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Tianzhi Li
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region Women's and Children's Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Hailin Ma
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China.
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Shi P, Feng X. Motor skills and cognitive benefits in children and adolescents: Relationship, mechanism and perspectives. Front Psychol 2022; 13:1017825. [PMID: 36478944 PMCID: PMC9721199 DOI: 10.3389/fpsyg.2022.1017825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE There is a strong interaction between motor skills and cognitive benefits for children and young people. The aim of this paper is to explore the relationship between motor skill types and their development and the cognitive benefits of children and adolescents. In turn, on this basis, it proposes pathways and mechanisms by which motor skills improve cognition, and provide a basis for subsequent teaching of skills that follow the laws of brain cognitive development. METHODS This paper summarizes the research on the relationship between different types of motor skills and their development and cognitive benefits of children and adolescents. Based on these relationships, pathways, and mechanisms for motor skills to improve cognition are tentatively proposed. RESULTS There is an overall pattern of "open > closed, strategy > interception, sequence > continuous" between motor skill types and the cognitive benefits of children and adolescents. Long-term motor skill learning practice is accompanied by increased cognitive benefits as skill proficiency increases. The dynamic interaction between motor skills and physical activity exposes children and adolescents to environmental stimuli and interpersonal interactions of varying complexity, promoting the development of agility, coordination and cardiorespiratory fitness, enhancing their motor experience, which in turn improves brain structure and functional activity. CONCLUSION Motor skills training promote cognitive efficiency in children and adolescents. Motor skill interventions that are open-ended, strategic and sequential in nature are more effective. Environmental stimuli, interpersonal interaction, agility, coordination, and cardiorespiratory fitness can be considered as skill attribute moderators of motor skills to improve cognition.
Collapse
Affiliation(s)
- Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Xiaosu Feng
- Physical Education College, Liaoning Normal University, Dalian, China
| |
Collapse
|
11
|
Wriessnegger SC, Unterhauser K, Bauernfeind G. Limb Preference and Skill Level Dependence During the Imagery of a Whole-Body Movement: A Functional Near Infrared Spectroscopy Study. Front Hum Neurosci 2022; 16:900834. [PMID: 35734351 PMCID: PMC9207184 DOI: 10.3389/fnhum.2022.900834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
In the past years motor imagery (MI) turned out to be also an innovative and effective tool for motor learning and improvement of sports performance. Whereas many studies investigating sports MI focusing on upper or lower limbs involvement, knowledge about involved neural structures during whole-body movements is still limited. In the present study we investigated brain activity of climbers during a kinesthetic motor imagery (KMI) climbing task with different difficulties by means of functional near infrared spectroscopy (fNIRS). Twenty healthy participants were split into two groups according to their climbing skill level. The aim of the current study is investigating neural correlates of a whole-body sports MI task with an additional focus on skill level dependency. Climbing experts and non-experts imagined bouldering an "easy" and "difficult" route from a first-person perspective while hemodynamic responses were recorded simultaneously. We found significant differences between the two climbing routes, easy and difficult within participants as well as between the two groups of different climbing skill levels. Overall beginners showed increased hemodynamic responses compared to experts in all defined regions of interest (ROI) supporting the claim of the neural efficiency hypothesis (NEH). Even though climbing is a complex, coordinated movement of upper and lower limbs we found a stronger activation focus of the upper limbs, especially of the dominant hand-area, while the foot area seems to be deactivated or inhibited simultaneously. Summarizing, these findings provide novel insights into brain activation during the imagery of a whole-body movement and its relation to climbing expertise.
Collapse
Affiliation(s)
| | - Kris Unterhauser
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
12
|
Xu YL, Wang XY, Chen J, Kang M, Wang YX, Zhang LJ, Shu HY, Liao XL, Zou J, Wei H, Ling Q, Shao Y. Altered Spontaneous Brain Activity Patterns of Meibomian Gland Dysfunction in Severely Obese Population Measured Using the Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2022; 13:914039. [PMID: 35633781 PMCID: PMC9130486 DOI: 10.3389/fpsyt.2022.914039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Utilizing the fractional amplitude of low-frequency fluctuations (fALFF) technique, this study sought to correlate spontaneous cerebral abnormalities with the clinical manifestations of meibomian gland dysfunction (MGD) in severely obese (SO) population. SUBJECTS AND METHODS Twelve MGD patients in SO population (PATs) (4 males and 8 females) and twelve healthy controls (HCs) (6 males and 6 females) matched by gender and age were enrolled. Every participant underwent resting-state functional magnetic resonance imaging (rs-MRI) scanning. Spontaneous cerebral activity alterations were examined using the fALFF method. Receiver operating characteristic (ROC) curves were utilized to classify the medial fALFF values of the PATs and HCs. PATs were also asked to complete anxiety and depression score forms, permitting a correlation analysis. RESULTS In contrast with HCs, PATs had prominently increased fALFF values in the left lingual gyrus, the right globus pallidus, the right anterior cingulate and paracingulate gyri and the left middle occipital lobe (P < 0.05), and decreased fALFF values in the right cerebellum, the left fusiform gyrus, the right medial orbitofrontal gyrus, the left triangle inferior frontal gyrus and the left inferior parietal gyrus (P < 0.05). The results of the ROC curve indicated that changes in regional fALFF values might help diagnose MGD in SO population. Moreover, fALFF values in the right cerebellum of PATs were positively correlated with hospital anxiety and depression scores (HADS) (r = 0.723, P = 0.008). The fALFF values in the left triangle inferior frontal gyrus of PAT were negatively correlated with HADS (r = -0.651, P = 0.022). CONCLUSIONS Aberrant spontaneous activity was observed in multiple regions of the cerebrum, offering helpful information about the pathology of MGD in SO population. Aberrant fALFF values in these regions likely relates to the latent pathologic mechanisms of anomalous cerebral activities in PATs.
Collapse
Affiliation(s)
- Yu-Ling Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Xin Wang
- Department of Ophthalmology and Visual Sciences, Cardiff University, Cardiff, United Kingdom
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation. J Sport Rehabil 2021; 31:717-735. [PMID: 34883466 DOI: 10.1123/jsr.2021-0139] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Arthrogenic muscle inhibition (AMI) impedes the recovery of muscle function following joint injury, and in a broader sense, acts as a limiting factor in rehabilitation if left untreated. Despite a call to treat the underlying pathophysiology of muscle dysfunction more than three decades ago, the continued widespread observations of post-traumatic muscular impairments are concerning, and suggest that interventions for AMI are not being successfully integrated into clinical practice. OBJECTIVES To highlight the clinical relevance of AMI, provide updated evidence for the use of clinically accessible therapeutic adjuncts to treat AMI, and discuss the known or theoretical mechanisms for these interventions. EVIDENCE ACQUISITION PubMed and Web of Science electronic databases were searched for articles that investigated the effectiveness or efficacy of interventions to treat outcomes relevant to AMI. EVIDENCE SYNTHESIS 122 articles that investigated an intervention used to treat AMI among individuals with pathology or simulated pathology were retrieved from 1986 to 2021. Additional articles among uninjured individuals were considered when discussing mechanisms of effect. CONCLUSION AMI contributes to the characteristic muscular impairments observed in patients recovering from joint injuries. If left unresolved, AMI impedes short-term recovery and threatens patients' long-term joint health and well-being. Growing evidence supports the use of neuromodulatory strategies to facilitate muscle recovery over the course of rehabilitation. Interventions should be individualized to meet the needs of the patient through shared clinician-patient decision-making. At a minimum, we propose to keep the treatment approach simple by attempting to resolve inflammation, pain, and effusion early following injury.
Collapse
|
14
|
Li L, Smith DM. Neural Efficiency in Athletes: A Systematic Review. Front Behav Neurosci 2021; 15:698555. [PMID: 34421553 PMCID: PMC8374331 DOI: 10.3389/fnbeh.2021.698555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
According to the neural efficiency hypothesis (NEH), professionals have more effective cortical functions in cognitive tasks. This study is focusing on providing a systematic review of sport-related NEH studies with functional neuroimaging or brain stimulation while performing a sport-specific task, with the aim to answer the question: How does long-term specialized training change an athlete's brain and improve efficiency? A total of 28 studies (N = 829, Experimental Group n = 430) from 2001 to 2020 (Median = 2014, SD = 5.43) were analyzed and results were organized into four different sections: expert-novice samples, perceptual-cognitive tasks and neuroimaging technologies, efficiency paradox, and the cluster analysis. Researchers examined a wide range of sport-specific videos and multiple object tracking (MOT) specific to 18 different sports and utilized blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), and electroencephalogram (EEG). Expert-novice comparisons were often adopted into investigations about the variations in general about optimal-controlled performance, neurophysiology, and behavioral brain research. Experts tended to perform at faster speeds, more accurate motor behavior, and with greater efficiency than novices. Experts report lower activity levels in the sensory and motor cortex with less energy expenditure, experts will possibly be more productive. These findings generally supported the NEH across the studies reviewed. However, an efficiency paradox and proficient brain functioning were revealed as the complementary hypothesis of the NEH. The discussion concentrates on strengths and key limitations. The conclusion highlights additional concerns and recommendations for prospective researchers aiming to investigate a broader range of populations and sports.
Collapse
Affiliation(s)
- Longxi Li
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| | - Daniel M Smith
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| |
Collapse
|
15
|
Badau D, Badau A, Manolache G, Ene MI, Neofit A, Grosu VT, Tudor V, Sasu R, Moraru R, Moraru L. The Motor Impact of the Static Balance in the Up Plank Position on Three Different Balls in Physical Activities of Physical Education Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042043. [PMID: 33669792 PMCID: PMC7922917 DOI: 10.3390/ijerph18042043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/23/2022]
Abstract
The present study aimed to assess the capacity of stability and motor impact in the development of the balance of student athletes by reducing the support surface on the ball in the up plank position, by using three categories of balls of equal size, but with different elasticity and weight. In this study, the second aim was to investigate the differences in maintaining static balance, on different balls, between those who are practicing individual sports or team sports. The total study sample include 48 students, active athletes (45.8% of individual sports and 54.2% of team sports), age X ± SD 18.74 ± 1.94 years. The research included two test sessions (initial and final) applied in two stages. The static balance tests were performed by measuring the time maintaining the up plank position with two and three points of support on the three balls, with different characteristics of elasticity and ranges of deformation: medical ball, handball ball and fitness ball. The results of the study showed that the superior initial and final results were recorded on the fitness ball, and the inferior results on the medicine ball. The upper difference was recorded at the up plank position with two support points (arms, legs) on the fitness ball, at 4980 s, and the lowest in the same test on the medical ball, at 3420 s. The largest difference was recorded at the up plank position with three support points on the handball ball, at 7.082 s, and the lowest in the same test on the medical ball, at 3.093 s. The subjects of the study perceived that the most difficult position to execute was the up plank position on the medical ball with two support points, with 43.8%, and the easiest stability was registered in the up plank position on the fitness ball with three points of support, of 37.5%. The relevance of the research results from the possibility of using different balls in conditions of positioning and body posture with a diminished support base in order to improve physical fitness.
Collapse
Affiliation(s)
- Dana Badau
- Faculty of Sciences and Letters, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (D.B.); (R.S.)
| | - Adela Badau
- Faculty of Sciences and Letters, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (D.B.); (R.S.)
- Correspondence: (A.B.); (R.M.); Tel.: +40-723-19-83-91 (A.B.); +40-736-42-00-24 (R.M.)
| | - Gabriel Manolache
- Faculty of Physical Education and Sport, “Dunarea de Jos” University, 800003 Galati, Romania; (G.M.); (M.I.E.); (A.N.)
| | - Mircea Ion Ene
- Faculty of Physical Education and Sport, “Dunarea de Jos” University, 800003 Galati, Romania; (G.M.); (M.I.E.); (A.N.)
| | - Adriana Neofit
- Faculty of Physical Education and Sport, “Dunarea de Jos” University, 800003 Galati, Romania; (G.M.); (M.I.E.); (A.N.)
| | - Vlad Teodor Grosu
- Faculty of Automotive Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| | - Virgil Tudor
- Faculty of Physical Education and Sports, National University of Physical Education and Sports, 060057 Bucharest, Romania;
| | - Radu Sasu
- Faculty of Sciences and Letters, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (D.B.); (R.S.)
| | - Raluca Moraru
- Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania;
- Correspondence: (A.B.); (R.M.); Tel.: +40-723-19-83-91 (A.B.); +40-736-42-00-24 (R.M.)
| | - Liviu Moraru
- Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|