1
|
Oberhauser FB, Bogenberger K, Czaczkes TJ. Ants prefer the option they are trained to first. J Exp Biol 2022; 225:286063. [PMID: 36524433 PMCID: PMC10088526 DOI: 10.1242/jeb.243984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The temporal order in which experiences occur can have a profound influence on their salience. Humans and other vertebrates usually memorise the first and last items of a list most readily. Studies on serial position learning in insects, mainly in bees, showed preference for last encountered items. In bees, pheromone presence can also influence motivation, and thus learning. However, neither serial position learning nor the effect of recruitment pheromones on learning have been well investigated in ants. We trained Lasius niger ants to make multiple visits to sucrose on a runway which alternated between lemon or rosemary odour, and the presence or absence of trail pheromone, and then tested for preference between the odours on a Y-maze, in order to investigate the effect of pheromone presence on learning. Pheromone presence did not affect ant choice. However, unexpectedly, the ants strongly preferred the first odour encountered. This was explored by the addition of a familiarisation visit without pheromone or odour. The familiarisation visit disabled or reversed this preference for the first odour encountered, with ants now mostly taking their 'default' preference by choosing the left side of the maze. Our study found no effect of trail pheromone on learning, but a strong yet fragile preference for the first odour experienced. These different preferences could lead to spatial segregation of foraging activity depending on prior experience and might facilitate efficient resource exploitation by colonies.
Collapse
Affiliation(s)
- Felix B Oberhauser
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Katharina Bogenberger
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Tomer J Czaczkes
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Baracchi D, Giurfa M, d'Ettorre P. Formic acid modulates latency and accuracy of nestmate recognition in carpenter ants. J Exp Biol 2021; 224:272354. [PMID: 34605911 DOI: 10.1242/jeb.242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022]
Abstract
Decision-making processes face the dilemma of being accurate or faster, a phenomenon that has been described as speed-accuracy trade-off in numerous studies on animal behaviour. In social insects, discriminating between colony members and aliens is subject to this trade-off as rapid and accurate rejection of enemies is of primary importance for the maintenance and ecological success of insect societies. Recognition cues distinguishing aliens from nestmates are embedded in the cuticular hydrocarbon (CHC) layer and vary among colonies. In walking carpenter ants, exposure to formic acid (FA), an alarm pheromone, improves the accuracy of nestmate recognition by decreasing both alien acceptance and nestmate rejection. Here, we studied the effect of FA exposure on the spontaneous aggressive mandible opening response (MOR) of harnessed Camponotus aethiops ants presented with either nestmate or alien CHCs. FA modulated both MOR accuracy and the latency to respond to odours of conspecifics. In particular, FA decreased the MOR towards nestmates but increased it towards aliens. Furthermore, FA decreased MOR latency towards aliens but not towards nestmates. As response latency can be used as a proxy of response speed, we conclude that contrary to the prediction of the speed-accuracy trade-off theory, ants did not trade off speed against accuracy in the process of nestmate recognition.
Collapse
Affiliation(s)
- David Baracchi
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse, France.,Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse, France.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Patrizia d'Ettorre
- Institut Universitaire de France (IUF), 75231 Paris, France.,Laboratory of Experimental and Comparative Ethology, University Sorbonne Paris Nord, 93430 Villetaneuse, France
| |
Collapse
|
3
|
Rossi N, Pereyra M, Moauro MA, Giurfa M, d'Ettorre P, Josens R. Trail pheromone modulates subjective reward evaluation in Argentine ants. J Exp Biol 2020; 223:jeb230532. [PMID: 32680904 DOI: 10.1242/jeb.230532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The Argentine ant, Linepithema humile, is native to South America but has become one of the most invasive species in the world. These ants heavily rely on trail pheromones for foraging, and previous studies have focused on such signals to develop a strategy for chemical control. Here, we studied the effects of pre-exposure to the trail pheromone on sugar acceptance and olfactory learning in Argentine ants. We used the synthetic trail pheromone component (Z)-9-hexadecenal, which triggers the same attraction and trail-following behavior as the natural trail pheromone. We found that pre-exposure to (Z)-9-hexadecenal increases the acceptance of sucrose solutions of different concentrations, thus changing the ants' subjective evaluation of a food reward. However, although ants learned to associate an odor with a sucrose reward, pheromone pre-exposure affected neither the learning nor the mid-term memory of the odor-reward association. Taking into account the importance of the Argentine ant as a pest and invasive organism, our results highlight the importance of pheromonal cues in resource evaluation, a fact that could be useful in control strategies implemented for this species.
Collapse
Affiliation(s)
- Natacha Rossi
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
| | - Muriel Pereyra
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| | - Mariel A Moauro
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
- Institut Universitaire de France (IUF), Paris, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR4443, University Sorbonne Paris Nord, Villetaneuse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Roxana Josens
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| |
Collapse
|