1
|
Jasemi E, Razmi A, Vaseghi S, Amiri S, Najafi SMA. The effect of Psilocybe cubensis alkaloids on depressive-like behavior in mice exposed to maternal separation with respect to hippocampal gene expression and DNA methylation of Slc6a4 and Nr3c1. Behav Pharmacol 2025; 36:115-126. [PMID: 39969076 DOI: 10.1097/fbp.0000000000000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Maternal separation as an early life stress can lead to long-lasting deleterious effects on cognitive and behavioral functions, and the mood state. On the other hand, Psilocybe cubensis (as one of the most well-known magic mushrooms) may be beneficial in the improvement or the treatment of neuropsychiatric disorders. In the present study, we aimed to investigate the effect of P. cubensis extract (PCE) on depressive-like and anxiety-like behaviors, and locomotor activity in mice exposed to early maternal separation. Also, we assessed the expression and methylation level of Slc6a4 and Nr3c1 in the hippocampus. Maternal separation was done in postnatal days (PNDs) 2-18. PCE was intraperitoneally injected at the dose of 20 mg/kg at PND 60, and our tests were done at days 1, 3, and 10, of administration. The results showed that maternal separation significantly induced depressive-like behavior in the forced swim test and anxiety-like behavior in the open field test (OFT). Also, maternal separation decreased locomotor activity in the OFT. In addition, maternal separation decreased the expression and increased the methylation level of both Slc6a4 and Nr3c1 in the hippocampus. However, PCE significantly reversed all these effects. In conclusion, it seems that P. cubensis affects serotonergic signaling via altering Slc6a4 expression and methylation level in the hippocampus of mice. The effect of P. cubensis on Nr3c1 expression and methylation level may also lead to alter the function of the hypothalamus-pituitary-adrenal axis and the stress response in mice exposed to maternal separation.
Collapse
Affiliation(s)
- Eghbal Jasemi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran
| |
Collapse
|
2
|
Mariani Wigley ILC, Björnsdotter M, Scheinin NM, Merisaari H, Saunavaara J, Parkkola R, Bonichini S, Montirosso R, Karlsson L, Karlsson H, Tuulari JJ. Infants' sex affects neural responses to affective touch in early infancy. Dev Psychobiol 2023; 65:e22419. [PMID: 37860896 DOI: 10.1002/dev.22419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023]
Abstract
Social touch is closely related to the establishment and maintenance of social bonds in humans, and the sensory brain circuit for gentle brushing is already active soon after birth. Brain development is known to be sexually dimorphic, but the potential effect of sex on brain activation to gentle touch remains unknown. Here, we examined brain activation to gentle skin stroking, a tactile stimulation that resembles affective or social touch, in term-born neonates. Eighteen infants aged 11-36 days, recruited from the FinnBrain Birth Cohort Study, were included in the study. During natural sleep, soft brush strokes were applied to the skin of the right leg during functional magnetic resonance imaging (fMRI) at 3 cm/s velocity. We examined potential differences in brain activation between males (n = 10) and females (n = 8) and found that females had larger blood oxygenation level dependent (BOLD) responses (brushing vs. rest) in bilateral orbitofrontal cortex (OFC), right ventral striatum and bilateral inferior striatum, pons, and cerebellum compared to males. Moreover, the psychophysiological interactions (PPI) analysis, setting the left and right OFC as seed regions, revealed significant differences between males and females. Females exhibited stronger PPI connectivity between the left OFC and posterior cingulate or cuneus. Our work suggests that social touch neural responses are different in male and female neonates, which may have major ramifications for later brain, cognitive, and social development. Finally, many of the sexually dimorphic brain responses were subcortical, not captured by surface-based neuroimaging, indicating that fMRI will be a relevant technique for future studies.
Collapse
Affiliation(s)
| | - Malin Björnsdotter
- Department of Affective Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Center for Cognitive and Computational Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Radiology, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Linnea Karlsson
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - Hasse Karlsson
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Exploring Effect of Postdischarge Developmental Support Program on Preterm Infant Neurodevelopment and BDNF Gene DNA Methylation. Adv Neonatal Care 2022; 23:E50-E58. [PMID: 36409665 DOI: 10.1097/anc.0000000000001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although developmental supportive care is an effective approach to improve the long-term psychomotor and/or neurobehavioral function of preterm infants, very limited studies have focused on the impact of after-discharge developmental support. The underlying epigenetic changes are unclear. PURPOSE This study aimed to explore the preliminary effect of an evidence-based Postdischarge Developmental Support Program (PDSP) on preterm infant neurodevelopment and underlying epigenetic changes, including brain-derived neurotrophic factor (BDNF) gene-related DNA methylation and expression. METHODS In this randomized controlled pilot trial, the preterm infant-parent dyads were randomized into either the intervention group/PDSP group (n = 22) or the control group/usual care group (n = 22). The neurodevelopmental outcomes of preterm infants were measured by Ages & Stages Questionnaires. Urine BDNF concentration level was tested by the enzyme-linked immunosorbent assay. Infant saliva specimens were collected to analyze the methylation level of BDNF gene promoter I at pre- and postintervention test. RESULTS After PDSP intervention, the total neurodevelopmental and the 5 domain scores of the PDSP group were all significantly higher than those of the control group ( P < .05). The BDNF levels decreased significantly only within control group ( P = .01). The difference in BDNF concentration and methylation levels between groups was not statistically significant. IMPLICATIONS FOR PRACTICE AND RESEARCH Postdischarge Developmental Support Program may promote the neurodevelopment of preterm infants but has no effect on BDNF's expression and gene methylation level at 3 months of corrected age. The epigenetic mechanism of PDSP needs further study using a larger sample and longer follow-up.
Collapse
|
5
|
Nechiporuk VM, Pentyuk LO, Shushkovskaya YY, Niushko TY, Korda MM. SUBMICROSCOPIC CHANGES IN THE SENSORIMOTOR AREA OF THE CEREBRAL CORTEX UNDER THE CONDITIONS OF EXPERIMENTAL HYPERHOMOCYSTEINEMIA, HYPER- AND HYPOTHYREOSIS AND THEIR COMBINED INFLUENCE. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-398-420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - M. M. Korda
- I. Horbachevsky Ternopil State Medical University
| |
Collapse
|