1
|
Ramezanpour H, Blizzard S, Kehoe DH, Fallah M. Oculomotor system can differentially process red and green colors during saccade programming in the presence of a competing distractor. Exp Brain Res 2022; 240:2847-2860. [PMID: 36100754 DOI: 10.1007/s00221-022-06459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022]
Abstract
Selective attention filters irrelevant information entering our brain to allow for fine-tuning of the relevant information processing. In the visual domain, shifts of attention are most often followed by a saccadic eye movement to objects and places of high relevance. Recent studies have shown that the stimulus color can affect saccade target selection and saccade trajectories. While those saccade modulations are based on perceptual color space, the level in the visual processing hierarchy at which color selection biases saccade programming remains unclear. As color has also been shown to influence manual response inhibition which is a key function of the prefrontal cortex, we hypothesized that the effects of color on executive functions would also inherently affect saccade programming. To test this hypothesis, we measured behavioral performance and saccade metrics during a modified saccadic Stroop task which reflects competition between color words ("RED" and "GREEN") and their color at the level of the prefrontal cortex. Our results revealed that the oculomotor system can differentially process red and green colors when planning a saccade in the presence of a competing distractor.
Collapse
Affiliation(s)
- Hamidreza Ramezanpour
- Centre for Vision Research, York University, Toronto, ON, Canada.
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada.
- VISTA: Vision Science to Application, York University, Toronto, ON, Canada.
| | - Shawn Blizzard
- Centre for Vision Research, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Devin Heinze Kehoe
- Centre for Vision Research, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
- VISTA: Vision Science to Application, York University, Toronto, ON, Canada
| | - Mazyar Fallah
- Centre for Vision Research, York University, Toronto, ON, Canada.
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada.
- VISTA: Vision Science to Application, York University, Toronto, ON, Canada.
- Department of Psychology, Faculty of Health, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|