1
|
Kujur PP, Ellappan S, Mondal AC. Neuronal and therapeutic perspectives on empathic pain: A rational insight. Neuropharmacology 2025; 272:110414. [PMID: 40081793 DOI: 10.1016/j.neuropharm.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/08/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Empathy is the capacity to experience and understand the feelings of others, thereby playing a key role in a person's mental well-being essentially by promoting kindness and a sense of belongingness to the group. However, too much empathy may result in psychological problems such as empathic distress, compassion fatigue, and burnout, collectively termed empathic pain. Several brain regions are implicated in processing empathic pain perception. Neuroimaging investigations bring in the context of brain structures involved in this emotional exchange, pointing toward the anterior insula (AI) and anterior cingulate cortex (ACC), indicating an overlap between the neural representation of direct and simulative pain. To discern such overlaps, therapeutic techniques for managing empathic pain require understanding different brain regions and their respective neural networks. At the moment, empathic pain is being treated using various methods, including pharmacological treatments such as antidepressants and psychological treatments such as mindfulness or meditation. For instance, researchers have been exploring the modulatory effects of neurotransmitters like serotonin, norepinephrine, and oxytocin on individuals' responses to empathic pain experience. Importantly, this review focuses on the specific brain parts and their unique roles in neurobiological pathways associated with emphatic pain and how shared neural networks play into available treatment options, suggesting possible future health benefits. Such an understanding of empathy can lead to more efficient management of types of care, focusing on enhancing social connections and mental well-being.
Collapse
Affiliation(s)
- Punit Prasanna Kujur
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences Jawaharlal Nehru University, New Delhi, 110067, India
| | - Surendar Ellappan
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Khrennikov A, Iryama S, Basieva I, Sato K. Quantum-like environment adaptive model for creation of phenotype. Biosystems 2024; 242:105261. [PMID: 38964651 DOI: 10.1016/j.biosystems.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The textbook conceptualization of phenotype creation, "genotype (G) + environment (E) + genotype & environment interactions (GE) ↦ phenotype (Ph)", is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The model is quantum-like, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the E-adaptation processes described by the quantum master equation, Gorini-Kossakowski-Sudarshan-Lindblad equation (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of E-adaptation phenotype's state entropy (disorder) first increases and then falls down - a stable and well-ordered phenotype is created. Traits, an organism's phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.
Collapse
Affiliation(s)
- Andrei Khrennikov
- Linnaeus University, International Center for Mathematical Modeling in Physics and Cognitive Sciences Växjö, SE-351 95, Sweden.
| | - Satoshi Iryama
- Tokyo University of Science, Faculty of Science and Technology, Department of Information Sciences, Noda City, Chiba 278-8510, Japan
| | - Irina Basieva
- Linnaeus University, International Center for Mathematical Modeling in Physics and Cognitive Sciences Växjö, SE-351 95, Sweden
| | - Keiko Sato
- Tokyo University of Science, Faculty of Science and Technology, Department of Information Sciences, Noda City, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Zainal NH, Newman MG. Examining the Effects of a Brief, Fully Self-Guided Mindfulness Ecological Momentary Intervention on Empathy and Theory-of-Mind for Generalized Anxiety Disorder: Randomized Controlled Trial. JMIR Ment Health 2024; 11:e54412. [PMID: 38787613 PMCID: PMC11161716 DOI: 10.2196/54412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The utility of brief mindfulness ecological momentary interventions (EMIs) to improve empathy and theory-of-mind has been underinvestigated, particularly in generalized anxiety disorder (GAD). OBJECTIVE In this randomized controlled trial, we aimed to examine the efficacy of a 14-day, fully self-guided, mindfulness EMI on the empathy and theory-of-mind domains for GAD. METHODS Adults (aged ≥18 y) diagnosed with GAD were randomized to a mindfulness EMI (68/110, 61.8%) or self-monitoring app (42/110, 38.2%) arm. They completed the Interpersonal Reactivity Index self-report empathy measure and theory-of-mind test (Bell-Lysaker Emotion Recognition Task) at prerandomization, postintervention, and 1-month follow-up (1MFU) time points. Hierarchical linear modeling was conducted with the intent-to-treat principle to determine prerandomization to postintervention (pre-post intervention) and prerandomization to 1MFU (pre-1MFU) changes, comparing the mindfulness EMI to self-monitoring. RESULTS Observed effects were generally stronger from pre-1MFU than from pre-post intervention time points. From pre-post intervention time points, the mindfulness EMI was more efficacious than the self-monitoring app on fantasy (the ability to imagine being in others' shoes; between-intervention effect size: Cohen d=0.26, P=.007; within-intervention effect size: Cohen d=0.22, P=.02 for the mindfulness EMI and Cohen d=-0.16, P=.10 for the self-monitoring app). From pre-1MFU time points, the mindfulness EMI, but not the self-monitoring app, improved theory-of-mind (a window into others' thoughts and intentions through abstract, propositional knowledge about their mental states, encompassing the ability to decipher social cues) and the fantasy, personal distress (stress when witnessing others' negative experiences), and perspective-taking (understanding others' perspective) empathy domains. The effect sizes were small to moderate (Cohen d=0.15-0.36; P<.001 to P=.01) for significant between-intervention effects from pre-1MFU time points. Furthermore, the within-intervention effect sizes for these significant outcomes were stronger for the mindfulness EMI (Cohen d=0.30-0.43; P<.001 to P=.03) than the self-monitoring app (Cohen d=-0.12 to 0.21; P=.001 to P>.99) from pre-1MFU time points. No between-intervention and within-intervention effects on empathic concern (feeling affection, compassion, and care when observing others in distress, primarily attending to their emotional well-being) were observed from pre-post intervention and pre-1MFU time points. CONCLUSIONS The brief mindfulness EMI improved specific domains of empathy (eg, fantasy, personal distress, and perspective-taking) and theory-of-mind with small to moderate effect sizes in persons with GAD. Higher-intensity, self-guided or coach-facilitated, multicomponent mindfulness EMIs targeting the optimization of social relationships are likely necessary to improve the empathic concern domain in this population. TRIAL REGISTRATION ClinicalTrials.gov NCT04846777; https://clinicaltrials.gov/study/NCT04846777.
Collapse
Affiliation(s)
- Nur Hani Zainal
- Department of Health Care Policy, Harvard Medical School, Boston, MA, United States
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Michelle G Newman
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
5
|
Trofimova I. Analytic Background in the Neuroscience of the Potential Project "Hippocrates". Brain Sci 2022; 13:brainsci13010039. [PMID: 36672021 PMCID: PMC9856329 DOI: 10.3390/brainsci13010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This paper reviews the principles identified in analytic neuroscience that could be used in the setup of an international project, "Hippocrates" (H-project), named after the author of the endocrine theory of temperaments. The H-project can aim to summarize the findings in functional neurochemistry of consistent behavioural patterns (CBPs) in health (such as temperament traits) and psychopathology (symptoms of psychiatric disorders); to have systematically structured neurochemical investigations; to have an analysis of CBPs that include all ranges of behavioural histories and to have these modules complemented by regional contrasts related to climate, diets and other bio-environmental factors. The review highlights the benefits of constructivism and illustrates the contrast between constructivism and current approaches in terms of analytic and methodological aspects. (1) "Where" the neurochemical biomarkers should be measured: the review expands the range of needed measurements to out-of-brain systems, including environmental factors, and explores the concept of Specialized Extended Phenotype. (2) "What" should be measured but is missing: the review points to the need for measurement of the "Throw & Catch" neurochemical relays; behavioural and neuronal events contributing to the consistency of the CBPs but not documented in measurements. (3) Structuring the H-project's setup: the paper briefly describes a proposed earlier neurochemical framework, Functional Ensemble of Temperament that that accommodates the neurochemical continuum between temperament and symptoms of psychiatric disorders. This framework is in line with documented "Throw & Catch" neurochemical relays and can also be used to organize data about the personal and professional history of an individual.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 92 Bowman St, Hamilton, ON L8S 2T6, Canada
| |
Collapse
|
6
|
Trofimova I, Bajaj S, Bashkatov SA, Blair J, Brandt A, Chan RCK, Clemens B, Corr PJ, Cyniak-Cieciura M, Demidova L, Filippi CA, Garipova M, Habel U, Haines N, Heym N, Hunter K, Jones NA, Kanen J, Kirenskaya A, Kumari V, Lenzoni S, Lui SSY, Mathur A, McNaughton N, Mize KD, Mueller E, Netter P, Paul K, Plieger T, Premkumar P, Raine A, Reuter M, Robbins TW, Samylkin D, Storozheva Z, Sulis W, Sumich A, Tkachenko A, Valadez EA, Wacker J, Wagels L, Wang LL, Zawadzki B, Pickering AD. What is next for the neurobiology of temperament, personality and psychopathology? Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Trofimova I. Transient nature of stable behavioural patterns, and how we can respect it. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Gu S, He Z, Xu Q, Dong J, Xiao T, Liang F, Ma X, Wang F, Huang JH. The Relationship Between 5-Hydroxytryptamine and Its Metabolite Changes With Post-stroke Depression. Front Psychiatry 2022; 13:871754. [PMID: 35558423 PMCID: PMC9086784 DOI: 10.3389/fpsyt.2022.871754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Post-stroke depression (PSD) is the most common and serious sequelae of stroke. Approximately 33% of stroke survivors were affected by PSD. However, many issues (e.g., incidence, diagnostic marker, and risk factor) related to PSD remained unclear. The "monoamine hypothesis" is a significant hypothesis for depression, which suggests that three monoamines play a key role in depression. Therefore, most current antidepressants are developed to modulate the monoamines on PSD treatment, and these antidepressants have good effects on patients with PSD. However, the potential mechanisms of three monoamines in PSD are still unclear. Previously, we proposed "three primary emotions," which suggested a new model of basic emotions based on the three monoamines. It may provide a new way for PSD treatment. In addition, recent studies have found that monoamine-related emotional intervention also showed potential effects in the treatment and prevention of PSD. This study discusses these issues and attempts to provide a prospect for future research on PSD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China.,Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Zhengming He
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Qiuyue Xu
- Department of Nurse, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Tingwei Xiao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Fei Liang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Xianjun Ma
- Section of Brain Diseases, Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| |
Collapse
|
9
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|