1
|
Kulig H, Polasik D, Drozd R, Grzesiak W, Hukowska-Szematowicz B, Yu YH, Cheng YH, Dybus A. Structural impact of GSR and LRP8 gene polymorphisms on protein function and their role in racing performance of homing pigeons. Int J Biol Macromol 2025; 310:143181. [PMID: 40246119 DOI: 10.1016/j.ijbiomac.2025.143181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Glutathione reductase (GSR) plays a critical role in the prevention of oxidative damage within the cell. Apolipoprotein E receptor 2 (LRP8) participates in a pathway that modulates synaptic plasticity events crucial for learning and memory. The above aspects are very important when homing pigeons participate in sports competitions. The aim of the study was to analyze single nucleotide polymorphisms (SNPs) in the GSR and LRP8 genes in homing pigeons and to evaluate the potential impact of these genotypes on racing performance, as well as their structural consequences for the encoded proteins. The research included a total of 311 young individuals. DNA was extracted from the blood. Genotypes were determined by the ACRS-PCR test designed. Statistical analysis revealed that the c.606G > T polymorphism in LRP8 gene significantly influenced racing performance, was associated with race performance heterozygous GT pigeons achieving higher mean values of ace points (AP) than homozygous individuals. Therefore, the GT genotype may serve as a selection criterion in pigeon breeding. Further research is necessary to confirm the functionality of the GSR KB376299.1:62398C > T SNP in shaping the racing phenotype of pigeons.
Collapse
Affiliation(s)
- Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Daniel Polasik
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland.
| | - Wilhelm Grzesiak
- Biostatistics, Bioinformatics and Animal Research Methods Research Team, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| |
Collapse
|
2
|
Zdilla MJ. Hundreds of body parts are named after hair: is anatomical terminology supercilious or simply super silly? Anat Sci Int 2024; 99:481-491. [PMID: 38587583 DOI: 10.1007/s12565-024-00765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
Relatively more-apparent body parts are often used to name relatively less-apparent body parts. To explore this etymological phenomenon, this report assesses anatomical terminology derived from some of the most apparent structures of the human body-hairs. Hair-related anatomical terminology involves varied etymons, roots, and derivatives: calvus "bald," cilia "eyelashes," glaber "hairless," pilus "hair," pubes (historically referring to the developing beard), pudendum "modesty" (referring to hair growth that covers genitalia), tempus "time" (referring to the location where hair commonly grays, thus showing a person's age), and tragus "goat" (referring to the tuft of hair that resembles the beard of a goat). Also including lanugo, vibrissae, hirci, flocculus, and cauda equina, a systematic review of Terminologia Anatomica and Terminologia Neuroanatomica revealed 285 unique non-duplicate hair-related terms. Several anatomical terms allude to particular age groups or sexes, but are used indiscriminately (e.g., tragus alludes to the older male ear, though may describe the fetal female ear). Likewise, human-centric anatomical terminology influences non-human anatomical terminology- a turtle has a "temporal bone" only because some humans develop gray hair on the sides of their heads as they age. Accordingly, etymological recursion is common: The human ear has a tragus, named after the goat, and the goat ear has a tragus, named after the human tragus, that was named after the goat. The use of Latin as the foundation of anatomical and medical terminology may appear seriously supercilious; however, it is often simply super silly. After all, hundreds of body parts are formally named after hair.
Collapse
Affiliation(s)
- Matthew J Zdilla
- Department of Pathology, Anatomy, and Laboratory Medicine (PALM), West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
| |
Collapse
|
3
|
Johny A, Janczak AM, Nordgreen J, Toscano MJ, Stratmann A. Mind the ramp: Association between early life ramp use and spatial cognition in laying hen pullets. PLoS One 2024; 19:e0302454. [PMID: 38669289 PMCID: PMC11051627 DOI: 10.1371/journal.pone.0302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Ramps facilitate earlier access to complex environments and increase early life voluntary exercise, which may positively affect the cognitive development of chickens. This study focused on quantifying individual differences in ramp use and its impact on spatial cognition of laying hen pullets. Sixteen identical pens were housed with Lohmann Selected Leghorn (LSL) chicks of which eight chicks from each pen were colour marked from one day of age (DoA) to serve as focal birds. We quantified overall ramp use (walk/run, wing-assisted incline running, and jump/fly to and from ramps) by scan sampling recorded videos for 6, 10, 12, 20, 27, 41, and 55 DoA for all focal birds. From 56 to 95 DoA, long and short-term spatial memory of three focal birds per pen were assessed in a holeboard test in three consecutive phases: cued, uncued and reversal. Mixed model analysis showed that the spatial cognitive abilities of the birds were linked to differences in ramp use frequency averaged across all observation days. Birds with higher ramp use made fewer reference (Estimate ± Confidence Interval = 0.94 [0.88, 0.99], p = 0.08) and working memory errors (Est ± CI = 0.77 [0.59, 1.00], p = 0.06) in the cued phase than birds with lower ramp use. In contrast, birds with higher ramp use made more reference memory errors (Est ± CI = 1.10 [1.01, 1.20], p = 0.05) in the reversal phase. Birds with higher ramp use also made more reference memory errors compared to birds with lower ramp use as the phases changed from cued to uncued (p = 0.001). Our results indicate that there might be a relationship between early life ramp use and spatial cognition of laying hens.
Collapse
Affiliation(s)
- Alex Johny
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
- Graduate school of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew M. Janczak
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Michael J. Toscano
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
| | - Ariane Stratmann
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
| |
Collapse
|
4
|
Morandi-Raikova A, Rosa-Salva O, Simdianova A, Vallortigara G, Mayer U. Hierarchical processing of feature, egocentric and relational information for spatial orientation in domestic chicks. J Exp Biol 2024; 227:jeb246447. [PMID: 38323420 DOI: 10.1242/jeb.246447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood. Here, we tested domestic chicks' egocentric and allocentric orientation abilities in a large circular arena. In experiment 1, we investigated whether domestic chicks possess a side bias during viewpoint-dependent egocentric orientation, revealing facilitation for targets on the chicks' left side. Experiment 2 showed that local features are preferred over viewpoint-dependent egocentric information when the two conflict. Lastly, in experiment 3, we found that in a situation where there is a choice between egocentric and allocentric spatial relational information provided by free-standing objects, chicks preferentially rely on egocentric information. We conclude that chicks orient according to a hierarchy of cues, in which the use of the visual appearance of an object is the dominant strategy, followed by viewpoint-dependent egocentric information and finally by spatial relational information.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Aleksandra Simdianova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| |
Collapse
|
5
|
Zhu JY, Zhang ZH, Liu G, Wan H. Enhanced Hippocampus-Nidopallium Caudolaterale Interaction in Visual-Spatial Associative Learning of Pigeons. Animals (Basel) 2024; 14:456. [PMID: 38338099 PMCID: PMC10854635 DOI: 10.3390/ani14030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Learning the spatial location associated with visual cues in the environment is crucial for survival. This ability is supported by a distributed interactive network. However, it is not fully understood how the most important task-related brain areas in birds, the hippocampus (Hp) and the nidopallium caudolaterale (NCL), interact in visual-spatial associative learning. To investigate the mechanisms of such coordination, synchrony and causal analysis were applied to the local field potentials of the Hp and NCL of pigeons while performing a visual-spatial associative learning task. The results showed that, over the course of learning, theta-band (4-12 Hz) oscillations in the Hp and NCL became strongly synchronized before the pigeons entered the critical choice platform for turning, with the information flowing preferentially from the Hp to the NCL. The learning process was primarily associated with the increased Hp-NCL interaction of theta rhythm. Meanwhile, the enhanced theta-band Hp-NCL interaction predicted the correct choice, supporting the pigeons' use of visual cues to guide navigation. These findings provide insight into the dynamics of Hp-NCL interaction during visual-spatial associative learning, serving to reveal the mechanisms of Hp and NCL coordination during the encoding and retrieval of visual-spatial associative memory.
Collapse
Affiliation(s)
- Jun-Yao Zhu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhi-Heng Zhang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Gang Liu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior, Shanghai International Studies University, Shanghai 201613, China
| | - Hong Wan
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| |
Collapse
|
6
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
7
|
Rook N, Stacho M, Schwarz A, Bingman VP, Güntürkün O. Neuronal circuits within the homing pigeon hippocampal formation. J Comp Neurol 2023; 531:790-813. [PMID: 36808394 DOI: 10.1002/cne.25462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Martin Stacho
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Ariane Schwarz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Skånberg L, Newberry RC, Estevez I, Keeling LJ. Environmental change or choice during early rearing improves behavioural adaptability in laying hen chicks. Sci Rep 2023; 13:6178. [PMID: 37061610 PMCID: PMC10105694 DOI: 10.1038/s41598-023-33212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Laying hens are typically moved to a novel environment after rearing, requiring adaptability to cope with change. We hypothesized that the standard rearing of laying hen chicks, in non-changing environments with limited choices (a single variant of each resource), impairs their ability to learn new routines, use new equipment and exploit new resources. On the contrary, rearing in a changing environment that also offers a choice of resource variants could better prepare chicks for the unexpected. To explore this hypothesis, environmental change and choice were manipulated in a 2 × 2 factorial experiment. Compared to standard rearing, greater change during early rearing, through repeatedly swapping litter and perch types, reduced initial freezing when exposed to a novel environment suggesting a lower fear response. Greater choice during rearing, through simultaneous access to multiple litter and perch types, resulted in shorter latencies to solve a detour task, more movement in novel environments and less spatial clustering, suggesting improved spatial skills and higher exploration. However, combining both change and choice did not generally result in greater improvement relative to providing one or the other alone. We conclude that environmental change and choice during rearing have different positive but non-synergistic effects on later adaptability potential.
Collapse
Affiliation(s)
- Lena Skånberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07, Uppsala, Sweden.
| | - Ruth C Newberry
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Inma Estevez
- Department of Animal Production, NEIKER Basque Research and Technology Alliance (BRTA) Basque Institute for Agricultural Research, 01080, Vitoria-Gasteiz, Spain
- IKERBASQUE Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
| | - Linda J Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07, Uppsala, Sweden
| |
Collapse
|