1
|
Hamburg S, Jimenez Rodriguez A, Htet A, Di Nuovo A. Active Inference for Learning and Development in Embodied Neuromorphic Agents. ENTROPY (BASEL, SWITZERLAND) 2024; 26:582. [PMID: 39056944 PMCID: PMC11276484 DOI: 10.3390/e26070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Taking inspiration from humans can help catalyse embodied AI solutions for important real-world applications. Current human-inspired tools include neuromorphic systems and the developmental approach to learning. However, this developmental neurorobotics approach is currently lacking important frameworks for human-like computation and learning. We propose that human-like computation is inherently embodied, with its interface to the world being neuromorphic, and its learning processes operating across different timescales. These constraints necessitate a unified framework: active inference, underpinned by the free energy principle (FEP). Herein, we describe theoretical and empirical support for leveraging this framework in embodied neuromorphic agents with autonomous mental development. We additionally outline current implementation approaches (including toolboxes) and challenges, and we provide suggestions for next steps to catalyse this important field.
Collapse
Affiliation(s)
- Sarah Hamburg
- Department of Computing, Sheffield Hallam University, Sheffield S1 1WB, UK; (A.J.R.); (A.H.); (A.D.N.)
| | | | | | | |
Collapse
|
2
|
Li SC, Fitzek FHP. Digitally embodied lifespan neurocognitive development and Tactile Internet: Transdisciplinary challenges and opportunities. Front Hum Neurosci 2023; 17:1116501. [PMID: 36845878 PMCID: PMC9950571 DOI: 10.3389/fnhum.2023.1116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Mechanisms underlying perceptual processing and inference undergo substantial changes across the lifespan. If utilized properly, technologies could support and buffer the relatively more limited neurocognitive functions in the still developing or aging brains. Over the past decade, a new type of digital communication infrastructure, known as the "Tactile Internet (TI)," is emerging in the fields of telecommunication, sensor and actuator technologies and machine learning. A key aim of the TI is to enable humans to experience and interact with remote and virtual environments through digitalized multimodal sensory signals that also include the haptic (tactile and kinesthetic) sense. Besides their applied focus, such technologies may offer new opportunities for the research tapping into mechanisms of digitally embodied perception and cognition as well as how they may differ across age cohorts. However, there are challenges in translating empirical findings and theories about neurocognitive mechanisms of perception and lifespan development into the day-to-day practices of engineering research and technological development. On the one hand, the capacity and efficiency of digital communication are affected by signal transmission noise according to Shannon's (1949) Information Theory. On the other hand, neurotransmitters, which have been postulated as means that regulate the signal-to-noise ratio of neural information processing (e.g., Servan-Schreiber et al., 1990), decline substantially during aging. Thus, here we highlight neuronal gain control of perceptual processing and perceptual inference to illustrate potential interfaces for developing age-adjusted technologies to enable plausible multisensory digital embodiments for perceptual and cognitive interactions in remote or virtual environments.
Collapse
Affiliation(s)
- Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany,Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany,*Correspondence: Shu-Chen Li,
| | - Frank H. P. Fitzek
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany,Deutsche Telekom Chair of Communication Networks, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Gómez-Carrillo A, Paquin V, Dumas G, Kirmayer LJ. Restoring the missing person to personalized medicine and precision psychiatry. Front Neurosci 2023; 17:1041433. [PMID: 36845417 PMCID: PMC9947537 DOI: 10.3389/fnins.2023.1041433] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Precision psychiatry has emerged as part of the shift to personalized medicine and builds on frameworks such as the U.S. National Institute of Mental Health Research Domain Criteria (RDoC), multilevel biological "omics" data and, most recently, computational psychiatry. The shift is prompted by the realization that a one-size-fits all approach is inadequate to guide clinical care because people differ in ways that are not captured by broad diagnostic categories. One of the first steps in developing this personalized approach to treatment was the use of genetic markers to guide pharmacotherapeutics based on predictions of pharmacological response or non-response, and the potential risk of adverse drug reactions. Advances in technology have made a greater degree of specificity or precision potentially more attainable. To date, however, the search for precision has largely focused on biological parameters. Psychiatric disorders involve multi-level dynamics that require measures of phenomenological, psychological, behavioral, social structural, and cultural dimensions. This points to the need to develop more fine-grained analyses of experience, self-construal, illness narratives, interpersonal interactional dynamics, and social contexts and determinants of health. In this paper, we review the limitations of precision psychiatry arguing that it cannot reach its goal if it does not include core elements of the processes that give rise to psychopathological states, which include the agency and experience of the person. Drawing from contemporary systems biology, social epidemiology, developmental psychology, and cognitive science, we propose a cultural-ecosocial approach to integrating precision psychiatry with person-centered care.
Collapse
Affiliation(s)
- Ana Gómez-Carrillo
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Vincent Paquin
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Guillaume Dumas
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Precision Psychiatry and Social Physiology Laboratory at the CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Laurence J Kirmayer
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
4
|
Wirkuttis N, Ohata W, Tani J. Turn-Taking Mechanisms in Imitative Interaction: Robotic Social Interaction Based on the Free Energy Principle. ENTROPY (BASEL, SWITZERLAND) 2023; 25:263. [PMID: 36832633 PMCID: PMC9955692 DOI: 10.3390/e25020263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
This study explains how the leader-follower relationship and turn-taking could develop in a dyadic imitative interaction by conducting robotic simulation experiments based on the free energy principle. Our prior study showed that introducing a parameter during the model training phase can determine leader and follower roles for subsequent imitative interactions. The parameter is defined as w, the so-called meta-prior, and is a weighting factor used to regulate the complexity term versus the accuracy term when minimizing the free energy. This can be read as sensory attenuation, in which the robot's prior beliefs about action are less sensitive to sensory evidence. The current extended study examines the possibility that the leader-follower relationship shifts depending on changes in w during the interaction phase. We identified a phase space structure with three distinct types of behavioral coordination using comprehensive simulation experiments with sweeps of w of both robots during the interaction. Ignoring behavior in which the robots follow their own intention was observed in the region in which both ws were set to large values. One robot leading, followed by the other robot was observed when one w was set larger and the other was set smaller. Spontaneous, random turn-taking between the leader and the follower was observed when both ws were set at smaller or intermediate values. Finally, we examined a case of slowly oscillating w in anti-phase between the two agents during the interaction. The simulation experiment resulted in turn-taking in which the leader-follower relationship switched during determined sequences, accompanied by periodic shifts of ws. An analysis using transfer entropy found that the direction of information flow between the two agents also shifted along with turn-taking. Herein, we discuss qualitative differences between random/spontaneous turn-taking and agreed-upon sequential turn-taking by reviewing both synthetic and empirical studies.
Collapse
|
5
|
van Es T, Hipólito I. Co-constructing Markov blankets: Tricky solutions: Comment on "The Markov blanket trick: On the scope of the free energy principle and active inference" by Vicente Raja et al. Phys Life Rev 2022; 43:29-31. [PMID: 36150310 DOI: 10.1016/j.plrev.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas van Es
- Centre for Philosophical Psychology, Universiteit Antwerpen, Belgium.
| | - Inês Hipólito
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Psychology, Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|