1
|
LeSage MG. Stimulus functions of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:133-170. [PMID: 35341565 PMCID: PMC9438898 DOI: 10.1016/bs.apha.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Behavioral pharmacology has made vital contributions to the concepts and methods used in tobacco and other drug use research, and is largely responsible for the now generally accepted notion that nicotine is the primary component in tobacco that engenders and maintains tobacco use. One of the most important contributions of behavioral pharmacology to the science of drug use is the notion that drugs can act as environmental stimuli that control behavior in many of the same ways as other stimuli (e.g., visual, gustatory, olfactory). The purpose of this chapter is to provide an overview of research that illustrates the respondent and operant stimulus functions of nicotine, using a contemporary taxonomy of stimulus functions as a general framework. Each function is formally defined and examples from research on the behavioral pharmacology of nicotine are presented. Some of the factors that modulate each function are also discussed. The role of nicotine's stimulus functions in operant and respondent theories of tobacco use is examined and some suggestions for future research are presented. The chapter illustrates how a taxonomy of stimulus functions can guide conceptions of tobacco use and direct research and theory accordingly.
Collapse
|
2
|
Maccioni P, Kaczanowska K, Lawrence H, Yun S, Bratzu J, Gessa GL, McDonald P, Colombo G. The Novel Positive Allosteric Modulator of the GABA B Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats. Front Cell Dev Biol 2021; 9:727576. [PMID: 34778249 PMCID: PMC8585307 DOI: 10.3389/fcell.2021.727576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor (GABAB PAMs) are of interest in the addiction field due to their ability to suppress several behaviors motivated by drugs of abuse. KK-92A is a novel GABAB PAM found to attenuate intravenous self-administration of nicotine and reinstatement of nicotine seeking in rats. This present study was aimed at extending to alcohol the anti-addictive properties of KK-92A. To this end, Sardinian alcohol-preferring rats were trained to lever-respond for oral alcohol (15% v/v) or sucrose (0.7% w/v) under the fixed ratio (FR) 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, rats were exposed to tests with acutely administered KK-92A under FR5 and progressive ratio schedules of reinforcement and cue-induced reinstatement of previously extinguished alcohol seeking. KK-92A effect on spontaneous locomotor activity was also evaluated. Treatment with 10 and 20 mg/kg KK-92A suppressed lever-responding for alcohol, amount of self-administered alcohol, and breakpoint for alcohol. Treatment with 20 mg/kg KK-92A reduced sucrose self-administration. Combination of per se ineffective doses of KK-92A (2.5 mg/kg) and the GABAB receptor agonist, baclofen (1 mg/kg), reduced alcohol self-administration. Treatment with 5, 10, and 20 mg/kg KK-92A suppressed reinstatement of alcohol seeking. Only treatment with 80 mg/kg KK-92A affected spontaneous locomotor activity. These results demonstrate the ability of KK-92A to inhibit alcohol-motivated behaviors in rodents and confirm that these effects are common to the entire class of GABAB PAMs. The remarkable efficacy of KK-92A is discussed in terms of its ago-allosteric properties.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Katarzyna Kaczanowska
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Harshani Lawrence
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Sang Yun
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
3
|
Lobina C, Maccioni P, Lorrai I, Zaru A, Collu M, Carai MAM, Brizzi A, Mugnaini C, Gessa GL, Corelli F, Colombo G. Suppressing effect of the novel positive allosteric modulator of the GABA B receptor, COR659, on locomotor hyperactivity induced by different drugs of abuse. Behav Brain Res 2020; 400:113045. [PMID: 33309750 DOI: 10.1016/j.bbr.2020.113045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
COR659 is a recently synthesized positive allosteric modulator (PAM) of the GABAB receptor. Similarly to all GABAB PAMs tested to date, COR659 has been reported to suppress different alcohol-related behaviors in rodents. The present study was designed to assess whether the anti-addictive properties of COR659 extend to drugs of abuse other than alcohol. Specifically, it investigated the effect of COR659 on cocaine-, amphetamine-, nicotine-, and morphine-induced locomotor hyperactivity in mice. To this aim, independent groups of CD1 mice were acutely pretreated with COR659 (0, 10, and 20 mg/kg; i.p.), then acutely treated with cocaine (0 and 10 mg/kg, s.c.), amphetamine (0 and 5 mg/kg; s.c.), nicotine (0 and 0.05 mg/kg; s.c.), or morphine (0 and 20 mg/kg; s.c.), and finally exposed for 60 min to a photocell-equipped motility cage. When given alone, both doses of COR659 were ineffective on spontaneous locomotor activity. Pretreatment with COR659 reduced, or even suppressed, the increase in motility counts induced by cocaine, amphetamine, nicotine, and morphine. Since locomotor hyperactivity is an attribute common to drugs of abuse, the results of the present study constitute the first line of evidence on the extension of the preclinical, anti-addictive profile of COR659 to cocaine, amphetamine, nicotine, and morphine.
Collapse
Affiliation(s)
- Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA, I-09042, Italy
| | - Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA, I-09042, Italy
| | - Irene Lorrai
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA, I-09042, Italy; Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, I-09042, Italy
| | - Alessandro Zaru
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA, I-09042, Italy; Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, I-09042, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, I-09042, Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, Cagliari, CA, I-09127, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, SI, I-53100, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, SI, I-53100, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA, I-09042, Italy; Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, I-09042, Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, SI, I-53100, Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA, I-09042, Italy.
| |
Collapse
|
4
|
Kunisawa N, Shimizu S, Kato M, Iha HA, Iwai C, Hashimura M, Ogawa M, Kawaji S, Kawakita K, Abe K, Ohno Y. Pharmacological characterization of nicotine-induced tremor: Responses to anti-tremor and anti-epileptic agents. J Pharmacol Sci 2018; 137:162-169. [PMID: 29945769 DOI: 10.1016/j.jphs.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
We previously showed that nicotine evoked kinetic tremor by activating the inferior olive, which is implicated in the pathogenesis of essential tremor, via α7 nicotinic acetylcholine receptors. Here, we evaluated the effects of various anti-tremor and anti-epileptic agents on nicotine-induced tremor in mice to clarify the pharmacological characteristics of nicotine tremor. Drugs effective for essential tremor, propranolol, diazepam and phenobarbital, all significantly inhibited kinetic tremor induced by an intraperitoneal (i.p.) injection of nicotine (1 mg/kg). In contrast, none of the medications for Parkinson's disease, l-DOPA, bromocriptine or trihexyphenidyl, affected the nicotine tremor. Among the anti-epileptic agents examined, valproate, carbamazepine and ethosuximide, significantly inhibited nicotine-induced tremor. In addition, a selective T-type Ca2+ channel blocker, TTA-A2, also suppressed the nicotine tremor. However, neither gabapentin, topiramate, zonisamide nor levetiracetam significantly affected nicotine-induced tremor. The present results show that nicotine-induced tremor resembles essential tremor not only on the neural basis, but also in terms of the pharmacological responses to anti-tremor agents, implying that nicotine-induced tremor can serve as a model for essential tremor. In addition, it is suggested that anti-epileptic agents, which have stimulant actions on the GABAergic system or blocking actions on voltage-gated Na+ channels and T-type Ca2+ channels, can alleviate essential tremor.
Collapse
Affiliation(s)
- Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masaki Kato
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Higor A Iha
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Chihiro Iwai
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Hashimura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mizuki Ogawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shohei Kawaji
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazuma Kawakita
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Keisuke Abe
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
5
|
Kunisawa N, Iha HA, Nomura Y, Onishi M, Matsubara N, Shimizu S, Ohno Y. Serotonergic modulation of nicotine-induced kinetic tremor in mice. J Pharmacol Sci 2017. [DOI: 10.1016/j.jphs.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Kunisawa N, Iha HA, Shimizu S, Tokudome K, Mukai T, Kinboshi M, Serikawa T, Ohno Y. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors. Behav Brain Res 2016; 314:173-80. [DOI: 10.1016/j.bbr.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
|
7
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
8
|
Leggio L, Zywiak WH, Edwards SM, Tidey JW, Swift RM, Kenna GA. A preliminary double-blind, placebo-controlled randomized study of baclofen effects in alcoholic smokers. Psychopharmacology (Berl) 2015; 232:233-43. [PMID: 24973894 PMCID: PMC4278944 DOI: 10.1007/s00213-014-3652-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/04/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE There is presently no approved single treatment for dual alcohol and nicotine dependencies. OBJECTIVE This pilot study investigated baclofen effects in alcoholic smokers. METHODS This was a preliminary double-blind placebo-controlled randomized clinical study with 30 alcoholic smokers randomized to baclofen at 80 mg/day or placebo. A subgroup (n=18) participated in an alcohol cue-reactivity experiment. RESULTS Baclofen, compared with placebo, significantly decreased the percent days of abstinence from alcohol-tobacco co-use (p=0.004). Alcohol dependence severity moderated baclofen effects, with the higher severity group having the greater baclofen response (p<0.001). Although the percent days of alcohol-tobacco co-use declined in both groups, this decline was greater after placebo than baclofen (p<0.001). Secondary analyses on alcohol or tobacco use alone suggested that the increase in percent days of co-abstinence was driven by the medication differences on heavy drinking days and on percent days smoking. In the cue-reactivity substudy, baclofen slightly decreased alcohol urge (p=0.058) and significantly reduced salivation (p=0.001), but these effects were not related to cue type. CONCLUSIONS This study provides preliminary evidence suggesting a possible role of baclofen in the treatment of alcoholic smokers. However, the mixed results and the small sample require larger confirmatory studies.
Collapse
Affiliation(s)
- Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC/15330) MSC 1108; Room 1-5429, Bethesda, MD, 20892-1108, USA,
| | - William H. Zywiak
- Decision Sciences Institute, P.I.R.E, Pawtucket, RI, USA. Butler Hospital, Providence, RI, USA. Department of Psychiatry and Human Behavior, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| | - Steven M. Edwards
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer W. Tidey
- Department of Psychiatry and Human Behavior, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| | - Robert M. Swift
- Department of Psychiatry and Human Behavior, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA. Veterans Affairs Medical Center, Providence, RI, USA. Roger Williams Medical Center, Providence, RI, USA
| | - George A. Kenna
- Department of Psychiatry and Human Behavior, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Varani AP, Pedrón VT, Machado LM, Antonelli MC, Bettler B, Balerio GN. Lack of GABAB receptors modifies behavioural and biochemical alterations induced by precipitated nicotine withdrawal. Neuropharmacology 2014; 90:90-101. [PMID: 25479464 DOI: 10.1016/j.neuropharm.2014.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023]
Abstract
The nicotine (NIC) withdrawal syndrome is considered to be a major cause of the high relapse rate among individuals undergoing smoking cessation. The aim of the present study was to evaluate a possible role of GABAB receptors in NIC withdrawal, by comparing GABAB1 knockout mice and their wild-type littermates. We analysed the time course of the global withdrawal score, the anxiety-like effects, monoamine concentrations, the brain-derived neurotrophic factor (BDNF) expression, the corticosterone plasmatic levels and [(3)H]epibatidine binding sites during NIC withdrawal precipitated by mecamylamine, a nicotinic receptor antagonist (MEC). In NIC withdrawn wild-type mice, we observed a global withdrawal score, an anxiety-like effect in the elevated plus maze, a decrease of the striatal dopamine and 3,4-dihydroxyphenylacetic acid concentrations, an increase of corticosterone plasma levels, a reduction of BDNF expression in several brain areas and an increase of [(3)H]epibatidine binding sites in specific brain regions. Interestingly, the effects found in NIC withdrawn wild-type mice were absent in GABAB1 knockout mice, suggesting that GABAB1 subunit of the GABAB receptor is involved in the regulation of the behavioural and biochemical alterations induced by NIC withdrawal in mice. These results reveal an interaction between the GABAB receptors and the neurochemical systems through which NIC exerts its long-term effects.
Collapse
Affiliation(s)
- Andrés P Varani
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - Valeria T Pedrón
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - Lirane Moutinho Machado
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - Marta C Antonelli
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Graciela N Balerio
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
10
|
Abstract
INTRODUCTION There is increasing evidence encouraging the development of drugs that positively modulate the γ-aminobutyric acid type B (GABA(B)) receptor for combating addiction. Compounds that target GABA(B) receptors are unique as anti-abuse therapies because of their impact against multiple addictive drugs. AREAS COVERED The authors present the basic information concerning the drug actions of GABA and GABA(B) receptor orthosteric agonists and positive allosteric modulators (PAM). Furthermore, they discuss several recent excellent reviews and newer results pertaining to GABA(B) receptor drug effects on responses to and self-administration of: alcohol (ethanol), nicotine, cocaine, (meth)amphetamine, and opioids. Preclinical and clinical data are considered. EXPERT OPINION Clinical data exist only for baclofen and mostly for alcohol use disorders. Additional trials are needed, but effects are promising. Whether PAMs, given alone or in combination with a direct GABA(B) receptor agonist, will be clinically effective and have fewer side effects requires investigation. The sedative effects of baclofen, a Food and Drug Administration (FDA)-approved drug, become less severe over time. Based on existing data, baclofen is well-tolerated. However, genetic and physiological differences are likely to contribute to individual responses to different therapeutic agents. The more immediate development of baclofen as a therapeutic for alcohol use disorders may be of significant benefit to some individuals.
Collapse
Affiliation(s)
- Tamara J Phillips
- Oregon Health & Science University, Veterans Affairs Medical Center, Department of Behavioral Neuroscience , 3710 SW US Veterans Hospital Rd, Portland, OR 97239 , USA +1 503 220 8262 Ext. 56674 ; +1 503 721 1029 ;
| | | |
Collapse
|
11
|
Cedillo LN, Miranda F. Effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of the GABAB receptor, CGP7930, on the development and expression of amphetamine-induced locomotor sensitization in rats. Pharmacol Rep 2014; 65:1132-43. [PMID: 24399709 DOI: 10.1016/s1734-1140(13)71471-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 05/13/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Several of the behavioral effects of amphetamine (AMPH) are mediated by an increase in dopamine neurotransmission in the nucleus accumbens. However, evidence shows that γ-aminobutyric acid B (GABAB) receptors are involved in the behavioral effects of psychostimulants, including AMPH. Here, we examined the effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of the GABAB receptor, CGP7930, on AMPH-induced locomotor sensitization. METHODS In a series of experiments, we examined whether baclofen (2.0, 3.0 and 4.0 mg/kg), CGP7930 (5.0, 10.0 and 20.0 mg/kg), or co-administration of CGP7930 (5.0, 10.0 and 20.0 mg/kg) with a lower dose of baclofen (2.0 mg/kg) could prevent the development and expression of locomotor sensitization produced by AMPH (1.0 mg/kg). RESULTS The results showed that baclofen treatment prevented both the development and expression of AMPH-induced locomotor sensitization in a dose-dependent manner. Furthermore, the positive allosteric modulator of the GABAB receptor, CGP7930, increased the effects of a lower dose of baclofen on AMPH-induced locomotor sensitization under both conditions. CONCLUSION These data provide further evidence that GABAB receptor ligands may modulate psychostimulant-induced behaviors.
Collapse
Affiliation(s)
- Laura N Cedillo
- FES Iztacala, National Autonomous University of México, Av. de los Barrios 1, Los Reyes Iztacala Tlalnepantla, Edo. de México 54090, México.
| | | |
Collapse
|
12
|
Effect of fendiline on the maintenance and expression of methamphetamine-induced conditioned place preference in Sprague-Dawley rats. Psychopharmacology (Berl) 2014; 231:2019-29. [PMID: 24264565 PMCID: PMC3988275 DOI: 10.1007/s00213-013-3347-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/25/2013] [Indexed: 01/30/2023]
Abstract
RATIONALE Fendiline is a GABAB receptor-positive allosteric modulator and L-type Ca²⁺ channel blocker that is safe for human use. Based on these pharmacological properties, fendiline may be useful to disrupt associative memories that can drive relapse to drug use in drug-addicted individuals OBJECTIVE The current study evaluated the potential of fendiline to inhibit the maintenance and expression of learned associations between methamphetamine (meth) and an environmental context using conditioned place preference (CPP) in rats, to model for the associative learning that occurs during drug abuse by humans METHODS Following meth conditioning (1 mg/kg), fendiline (5 mg/kg) was administered at various post-conditioning times to ascertain if there was a temporal window during which fendiline would be effective. RESULTS Two once-daily injections of fendiline did not influence the maintenance of CPP regardless of the post-conditioning treatment time while 10 once-daily fendiline treatments inhibited CPP maintenance (p < 0.05). Fendiline administered immediately prior to the CPP test inhibited expression of meth-induced CPP in rats with a fendiline treatment history of 10 once-daily injections (p < 0.05) or those that received two injections that corresponded to the last 2 days of the 10-day treatment (p < 0.05). Fendiline did not produce preference or aversion on its own, nor did it alter motivated motor behavior. CONCLUSION Maintenance and expression of meth CPP is mitigated by repeated fendiline treatments when administered during the days that precede CPP testing. Reduction in the significance of meth-associated cues can reduce relapse; therefore, fendiline may be of value for addiction therapy in abstinent, meth-addicted humans.
Collapse
|
13
|
Falco AM, McDonald CG, Smith RF. Anxiety status affects nicotine- and baclofen-induced locomotor activity, anxiety, and single-trial conditioned place preference in male adolescent rats. Dev Psychobiol 2014; 56:1352-64. [PMID: 24719177 DOI: 10.1002/dev.21217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 03/18/2014] [Indexed: 11/07/2022]
Abstract
Adolescents have an increased vulnerability to nicotine and anxiety may play a role in the development of nicotine abuse. One possible treatment for anxiety disorders and substance abuse is the GABAB agonist, baclofen. The aim of the present study was to determine the effect of anxiety-like behavior on single-trial nicotine conditioned place preference in adolescent rats, and to assess the action of baclofen. Baclofen was shown to have effects on locomotor and anxiety-like behavior in rats divided into high-anxiety and low-anxiety groups. Baclofen decreased locomotor behavior in high-anxiety rats. Baclofen alone failed to produce differences in anxiety-like behavior, but nicotine and baclofen + nicotine administration were anxiolytic. High- and low-anxiety groups also showed differences in single-trial nicotine-induced place preference. Only high-anxiety rats formed place preference to nicotine, while rats in the low-anxiety group formed no conditioned place preference. These results suggest that among adolescents, high-anxiety individuals are more likely to show preference for nicotine than low-anxiety individuals.
Collapse
Affiliation(s)
- Adriana M Falco
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA, 22030
| | | | | |
Collapse
|
14
|
Cousin MA, Ebbert JO, Wiinamaki AR, Urban MD, Argue DP, Ekker SC, Klee EW. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment. PLoS One 2014; 9:e90467. [PMID: 24658307 PMCID: PMC3962344 DOI: 10.1371/journal.pone.0090467] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation.
Collapse
Affiliation(s)
- Margot A. Cousin
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jon O. Ebbert
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Nicotine Dependence Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amanda R. Wiinamaki
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark D. Urban
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David P. Argue
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Ekker
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Mugnaini C, Pedani V, Casu A, Lobina C, Casti A, Maccioni P, Porcu A, Giunta D, Lamponi S, Solinas M, Dragoni S, Valoti M, Colombo G, Castelli MP, Gessa GL, Corelli F. Synthesis and pharmacological characterization of 2-(acylamino)thiophene derivatives as metabolically stable, orally effective, positive allosteric modulators of the GABAB receptor. J Med Chem 2013; 56:3620-35. [PMID: 23544432 DOI: 10.1021/jm400144w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two recently reported hit compounds, COR627 and COR628, underpinned the development of a series of 2-(acylamino)thiophene derivatives. Some of these compounds displayed significant activity in vitro as positive allosteric modulators of the GABAB receptor by potentiating GTPγS stimulation induced by GABA at 2.5 and 25 μM while failing to exhibit intrinsic agonist activity. Compounds were also found to be effective in vivo, potentiating baclofen-induced sedation/hypnosis in DBA mice when administered either intraperitoneally or intragastrically. Although displaying a lower potency in vitro than the reference compound GS39783, the new compounds 6, 10, and 11 exhibited a higher efficacy in vivo: combination of these compounds with a per se nonsedative dose of baclofen resulted in shorter onset and longer duration of the loss of righting reflex in mice. Test compounds showed cytotoxic effects at concentrations comparable to or higher than those of GS39783 or BHF177.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|