1
|
Revell AY, Silva AB, Arnold TC, Stein JM, Das SR, Shinohara RT, Bassett DS, Litt B, Davis KA. A framework For brain atlases: Lessons from seizure dynamics. Neuroimage 2022; 254:118986. [PMID: 35339683 PMCID: PMC9342687 DOI: 10.1016/j.neuroimage.2022.118986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
Brain maps, or atlases, are essential tools for studying brain function and organization. The abundance of available atlases used across the neuroscience literature, however, creates an implicit challenge that may alter the hypotheses and predictions we make about neurological function and pathophysiology. Here, we demonstrate how parcellation scale, shape, anatomical coverage, and other atlas features may impact our prediction of the brain's function from its underlying structure. We show how network topology, structure-function correlation (SFC), and the power to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas choice and atlas features. Through the lens of our disease system, we propose a general framework and algorithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and predictive validity of an atlas. Broadly, our framework strives to provide empirical guidance to neuroscience research utilizing the various atlases published over the last century.
Collapse
Affiliation(s)
- Andrew Y Revell
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Alexander B Silva
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
| | - T Campbell Arnold
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel M Stein
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Endeavor, Perelman school of Medicine, University of Pennsylvania, PA 19104, USA
| | - Dani S Bassett
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Brian Litt
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Kim M, Choi KS, Hyun RC, Hwang I, Yun TJ, Kim SM, Kim JH. Free-water diffusion tensor imaging detects occult periependymal abnormality in the AQP4-IgG-seropositive neuromyelitis optica spectrum disorder. Sci Rep 2022; 12:512. [PMID: 35017589 PMCID: PMC8752776 DOI: 10.1038/s41598-021-04490-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
To compare free-water corrected diffusion tensor imaging (DTI) measures in the normal-appearing periependymal area between AQP4-IgG-seropositive NMOSD and multiple sclerosis (MS) to investigate occult pathophysiology.
This prospective study included 44 patients (mean age, 39.52 ± 11.90 years; 14 men) with AQP4-IgG-seropositive NMOSD (n = 20) and MS (n = 24) who underwent DTI between April 2014 and April 2020. Based on free-water corrected DTI measures obtained from normal-appearing periependymal voxels of (1) lateral ventricles and (2) the 3rd and 4th ventricles as dependent variables, MANCOVA was conducted to compare the two groups, using clinical variables as covariates. A significant difference was found between AQP4-IgG-seropositive NMOSD and MS in the 3rd and 4th periependymal voxels (λ = 0.462, P = 0.001). Fractional anisotropy, axial diffusivity was significantly decreased and radial diffusivity was increased in AQP4-IgG-seropositive NMOSD in post-hoc analysis, compared with MS (F = 27.616, P < 0.001, F = 7.336, P = 0.011, and F = 5.800, P = 0.022, respectively). Free-water corrected DTI measures differ in the periependymal area surrounding the diencephalon and brain stem/cerebellum between MS and NMOSD, which may suggest occult white matter injury in areas with distribution of AQP-4 in NMOSD.
Collapse
Affiliation(s)
- Minchul Kim
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ryoo Chang Hyun
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Ji-Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kirk-Provencher KT, Nelson-Aguiar RJ, Spillane NS. Neuroanatomical Differences Among Sexual Offenders: A Targeted Review with Limitations and Implications for Future Directions. VIOLENCE AND GENDER 2020; 7:86-97. [PMID: 32939353 PMCID: PMC7488205 DOI: 10.1089/vio.2019.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As sexual assault and child sexual abuse continue to be worldwide public health concerns, research has continued to explore factors associated with sexual offending. Structural and functional neuroanatomical brain differences have been examined in an effort to differentiate sexual offenders and their behavior. This targeted review searched PubMed and Google Scholar for empirical studies using brain imaging techniques to examine possible structural or functional differences among control groups compared with at least one group of sexual offenders with contact offenses. This targeted review summarizes the structural and functional findings of 15 brain imaging studies (i.e., computed tomography, diffusion tensor imaging, magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging), which suggest possible differences in brain size and gray matter volume, cortical thickness, white matter connectivity, and specific structural and functional differences among brain regions (fronto-temporal region, amygdala, prefrontal cortex, etc.). The methodological limitations of brain imaging studies and the associated findings with regard to sexual offenders are highlighted, as research indicates that many of the proposed differences in brain structure and function are not unique to this population. We further highlight several limitations to using neuroimaging studies to examine this population of interest, including publication bias, small sample size, underpowered studies, and all-male samples. As these results are mixed and findings are not seemingly unique to sexual offenders, we suggest future sexual offender research may benefit from focusing on more financially feasible options, such as neuropsychological assessment approaches, to assess for and attend to offenders' criminogenic and rehabilitative/therapeutic needs in alignment with the risk-need-responsivity model.
Collapse
Affiliation(s)
| | | | - Nichea S. Spillane
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
4
|
Shah P, Ashourvan A, Mikhail F, Pines A, Kini L, Oechsel K, Das SR, Stein JM, Shinohara RT, Bassett DS, Litt B, Davis KA. Characterizing the role of the structural connectome in seizure dynamics. Brain 2019; 142:1955-1972. [PMID: 31099821 PMCID: PMC6598625 DOI: 10.1093/brain/awz125] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
Collapse
Affiliation(s)
- Preya Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Ashourvan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fadi Mikhail
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Pines
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lohith Kini
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Oechsel
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Kim D, Yoo JH, Park YW, Kim M, Shin DW, Jeong B. Anatomical and Neurochemical Correlates of Parental Verbal Abuse: A Combined MRS-Diffusion MRI Study. Front Hum Neurosci 2019; 13:12. [PMID: 30760992 PMCID: PMC6361791 DOI: 10.3389/fnhum.2019.00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Despite the critical impact of parental dialog on children who remain physically and psychologically dependent, most studies have focused on brain alterations in people exposed to moderate-to-high levels of emotional maltreatment with/without psychopathology. We measured metabolites in the pregenual anterior cingulate cortex (pgACC) acquired with single-voxel proton magnetic resonance spectroscopy and anatomical connectivity assessed with probabilistic tractography in 46 healthy young adults who experienced no-to-low level parental verbal abuse (paVA) during their childhood and adolescence. The partial least square regression (PLSR) model showed that individual variance of perceived paVA was associated with chemical properties and structural connectivity of pregenual anterior cingulate cortex (pgACC; prediction R 2 = 0.23). The jackknife test was used to identify features that significantly contributed to the partial least square regression (PLSR) model; a negative association of paVA was found with myo-inositol concentration, anatomical connectivities with the right caudate and with the right transverse temporal gyrus. Of note, positive associations were also found with the left pars triangularis, left cuneus, right inferior temporal cortex, right entorhinal cortex and right amygdala. Our results showing both a negative association of frontal glial function and positive associations of anatomical connectivities in several networks associated with threat detection or visual information processing suggest both anatomical and neurochemical adaptive changes in medial frontolimbic networks to low-level paVA experiences.
Collapse
Affiliation(s)
- Dohyun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jae Hyun Yoo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Young Woo Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Minchul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Dong Woo Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
6
|
Within brain area tractography suggests local modularity using high resolution connectomics. Sci Rep 2017; 7:39859. [PMID: 28054634 PMCID: PMC5213837 DOI: 10.1038/srep39859] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Previous structural brain connectivity studies have mainly focussed on the macroscopic scale of around 1,000 or fewer brain areas (network nodes). However, it has recently been demonstrated that high resolution structural connectomes of around 50,000 nodes can be generated reproducibly. In this study, we infer high resolution brain connectivity matrices using diffusion imaging data from the Human Connectome Project. With such high resolution we are able to analyse networks within brain areas in a single subject. We show that the global network has a scale invariant topological organisation, which means there is a hierarchical organisation of the modular architecture. Specifically, modules within brain areas are spatially localised. We find that long range connections terminate between specific modules, whilst short range connections via highly curved association fibers terminate within modules. We suggest that spatial locations of white matter modules overlap with cytoarchitecturally distinct grey matter areas and may serve as the structural basis for function specialisation within brain areas. Future studies might elucidate how brain diseases change this modular architecture within brain areas.
Collapse
|
7
|
Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J. Success of Anomia Treatment in Aphasia Is Associated With Preserved Architecture of Global and Left Temporal Lobe Structural Networks. Neurorehabil Neural Repair 2015; 30:266-79. [PMID: 26150147 DOI: 10.1177/1545968315593808] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Targeted speech therapy can lead to substantial naming improvement in some subjects with anomia following dominant-hemisphere stroke. We investigated whether treatment-induced improvement in naming is associated with poststroke preservation of structural neural network architecture. METHODS Twenty-four patients with poststroke chronic aphasia underwent 30 hours of speech therapy over a 2-week period and were assessed at baseline and after therapy. Whole brain maps of neural architecture were constructed from pretreatment diffusion tensor magnetic resonance imaging to derive measures of global brain network architecture (network small-worldness) and regional network influence (nodal betweenness centrality). Their relationship with naming recovery was evaluated with multiple linear regressions. RESULTS Treatment-induced improvement in correct naming was associated with poststroke preservation of global network small worldness and of betweenness centrality in temporal lobe cortical regions. Together with baseline aphasia severity, these measures explained 78% of the variability in treatment response. CONCLUSIONS Preservation of global and left temporal structural connectivity broadly explains the variability in treatment-related naming improvement in aphasia. These findings corroborate and expand on previous classical lesion-symptom mapping studies by elucidating some of the mechanisms by which brain damage may relate to treated aphasia recovery. Favorable naming outcomes may result from the intact connections between spared cortical areas that are functionally responsive to treatment.
Collapse
Affiliation(s)
| | | | - Travis Nesland
- Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|