1
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Ruiz-Torras S, Gudayol-Ferré E, Fernández-Vazquez O, Cañete-Massé C, Peró-Cebollero M, Guàrdia-Olmos J. Hypoconnectivity networks in schizophrenia patients: A voxel-wise meta-analysis of Rs-fMRI. Int J Clin Health Psychol 2023; 23:100395. [PMID: 37533450 PMCID: PMC10392089 DOI: 10.1016/j.ijchp.2023.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
In recent years several meta-analyses regarding resting-state functional connectivity in patients with schizophrenia have been published. The authors have used different data analysis techniques: regional homogeneity, seed-based data analysis, independent component analysis, and amplitude of low frequencies. Hence, we aim to perform a meta-analysis to identify connectivity networks with different activation patterns between people diagnosed with schizophrenia and healthy controls using voxel-wise analysis. METHOD We collected primary studies exploring whole brain connectivity by functional magnetic resonance imaging at rest in patients with schizophrenia compared with healthy controls. We identified 25 studies included high-quality studies that included 1285 patients with schizophrenia and 1279 healthy controls. RESULTS The results indicate hypoactivation in the right precentral gyrus and the left superior temporal gyrus of patients with schizophrenia compared with healthy controls. CONCLUSIONS These regions have been linked with some clinical symptoms usually present in Plea with schizophrenia, such as auditory verbal hallucinations, formal thought disorder, and the comprehension and production of gestures.
Collapse
Affiliation(s)
- Silvia Ruiz-Torras
- Clínica Psicològica de la Universitat de Barcelona, Fundació Josep Finestres, Universitat de Barcelona, Spain
| | | | | | - Cristina Cañete-Massé
- Facultat de Psicologia, Secció de Psicologia Quantitativa, Universitat de Barcelona, Spain
- UB Institute of Complex Systems, Universitat de Barcelona, Spain
| | - Maribel Peró-Cebollero
- Facultat de Psicologia, Secció de Psicologia Quantitativa, Universitat de Barcelona, Spain
- UB Institute of Complex Systems, Universitat de Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Facultat de Psicologia, Secció de Psicologia Quantitativa, Universitat de Barcelona, Spain
- UB Institute of Complex Systems, Universitat de Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Spain
| |
Collapse
|
3
|
Cai M, Wang R, Liu M, Du X, Xue K, Ji Y, Wang Z, Zhang Y, Guo L, Qin W, Zhu W, Fu J, Liu F. Disrupted local functional connectivity in schizophrenia: An updated and extended meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:93. [PMID: 36347874 PMCID: PMC9643538 DOI: 10.1038/s41537-022-00311-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 06/06/2023]
Abstract
Neuroimaging studies have shown that schizophrenia is associated with disruption of resting-state local functional connectivity. However, these findings vary considerably, which hampers our understanding of the underlying pathophysiological mechanisms of schizophrenia. Here, we performed an updated and extended meta-analysis to identify the most consistent changes of local functional connectivity measured by regional homogeneity (ReHo) in schizophrenia. Specifically, a systematic search of ReHo studies in patients with schizophrenia in PubMed, Embase, and Web of Science identified 18 studies (20 datasets), including 652 patients and 596 healthy controls. In addition, we included three whole-brain statistical maps of ReHo differences calculated based on independent datasets (163 patients and 194 controls). A voxel-wise meta-analysis was then conducted to investigate ReHo alterations and their relationship with clinical characteristics using the newly developed seed-based d mapping with permutation of subject images (SDM-PSI) meta-analytic approach. Compared with healthy controls, patients with schizophrenia showed significantly higher ReHo in the bilateral medial superior frontal gyrus, while lower ReHo in the bilateral postcentral gyrus, right precentral gyrus, and right middle occipital gyrus. The following sensitivity analyses including jackknife analysis, subgroup analysis, heterogeneity test, and publication bias test demonstrated that our results were robust and highly reliable. Meta-regression analysis revealed that illness duration was negatively correlated with ReHo abnormalities in the right precentral/postcentral gyrus. This comprehensive meta-analysis not only identified consistent and reliably aberrant local functional connectivity in schizophrenia but also helped to further deepen our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Gao Z, Xiao Y, Zhang Y, Zhu F, Tao B, Tang X, Lui S. Comparisons of resting-state brain activity between insomnia and schizophrenia: a coordinate-based meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:80. [PMID: 36207333 PMCID: PMC9547062 DOI: 10.1038/s41537-022-00291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Growing evidence shows that insomnia is closely associated with schizophrenia (SCZ), but the neural mechanism under the association remains unclear. A direct comparison of the patterns of resting-state brain activities would help understand the above question. Using meta-analytic approach, 11 studies of insomnia vs. healthy controls (HC) and 39 studies of SCZ vs. HC were included to illuminate the common and distinct patterns between insomnia and SCZ. Results showed that SCZ and insomnia shared increased resting-state brain activities in frontolimbic structures including the right medial prefrontal gyrus (mPFC) and left parahippocampal gyrus. SCZ additionally revealed greater increased activities in subcortical areas including bilateral putamen, caudate and right insula and greater decreased activities in precentral gyrus and orbitofrontal gyrus. Our study reveals both shared and distinct activation patterns in SCZ and insomnia, which may provide novel insights for understanding the neural basis of the two disorders and enlighten the possibility of the development of treatment strategies for insomnia in SCZ in the future.
Collapse
Affiliation(s)
- Ziyang Gao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Zhang
- grid.412901.f0000 0004 1770 1022Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Zhu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangdong Tang
- grid.412901.f0000 0004 1770 1022Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Kong M, Chen T, Gao S, Ni S, Ming Y, Chai X, Ling C, Xu X. Abnormal network homogeneity of default-mode network and its relationships with clinical symptoms in antipsychotic-naïve first-diagnosis schizophrenia. Front Neurosci 2022; 16:921547. [PMID: 35968384 PMCID: PMC9369006 DOI: 10.3389/fnins.2022.921547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia is a severe mental disorder affecting around 0.5–1% of the global population. A few studies have shown the functional disconnection in the default-mode network (DMN) of schizophrenia patients. However, the findings remain discrepant. In the current study, we compared the intrinsic network organization of DMN of 57 first-diagnosis drug-naïve schizophrenia patients with 50 healthy controls (HCs) using a homogeneity network (NH) and explored the relationships of DMN with clinical characteristics of schizophrenia patients. Receiver operating characteristic (ROC) curves analysis and support vector machine (SVM) analysis were applied to calculate the accuracy of distinguishing schizophrenia patients from HCs. Our results showed that the NH values of patients were significantly higher in the left superior medial frontal gyrus (SMFG) and right cerebellum Crus I/Crus II and significantly lower in the right inferior temporal gyrus (ITG) and bilateral posterior cingulate cortex (PCC) compared to those of HCs. Additionally, negative correlations were shown between aberrant NH values in the right cerebellum Crus I/Crus II and general psychopathology scores, between NH values in the left SMFG and negative symptom scores, and between the NH values in the right ITG and speed of processing. Also, patients’ age and the NH values in the right cerebellum Crus I/Crus II and the right ITG were the predictors of performance in the social cognition test. ROC curves analysis and SVM analysis showed that a combination of NH values in the left SMFG, right ITG, and right cerebellum Crus I/Crus II could distinguish schizophrenia patients from HCs with high accuracy. The results emphasized the vital role of DMN in the neuropathological mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Mingjun Kong
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Tian Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Shuzhan Gao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Sulin Ni
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yidan Ming
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xintong Chai
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chenxi Ling
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Xijia Xu,
| |
Collapse
|
6
|
Combining fMRI and DISC1 gene haplotypes to understand working memory-related brain activity in schizophrenia. Sci Rep 2022; 12:7351. [PMID: 35513527 PMCID: PMC9072540 DOI: 10.1038/s41598-022-10660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ.
Collapse
|
7
|
Kang J, Jiao Z, Qin Y, Wang Y, Wang J, Jin L, Feng J, Wang F, Tang Y, Gong X. Associations between polygenic risk scores and amplitude of low-frequency fluctuation of inferior frontal gyrus in schizophrenia. J Psychiatr Res 2022; 147:4-12. [PMID: 34999338 DOI: 10.1016/j.jpsychires.2021.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SCZ) is a serious and complex mental disorder with high heritability. Polygenic risk score (PRS) is a useful tool calculating the accumulating effects of multiple common genetic variants of schizophrenia. The amplitude of low-frequency fluctuation (ALFF) is an efficient index to reflect spontaneous, intrinsic neuronal activity. Aberrant ALFF of brain regions were reported in schizophrenia frequently, but the relationship between PRS and ALFF has not been studied. In the present study, we compared PRS and ALFF in 101 schizophrenia patients and 106 age-matched healthy controls to test their associations with schizophrenia. Then, the correlation of PRS with ALFF was measured to reveal the effect of polygenic risk on brain activity in schizophrenia. We found that schizophrenia patients showed significant differences in PRS and ALFF compared with controls. Twenty-six brain regions showed significant difference of ALFF between schizophrenia cases and controls, of which left inferior frontal gyrus, triangular part (IFGtriang.L) showed increased activity in schizophrenia. PRS-SCZ was positively correlated with ALFF in IFGtriang.L in 57 non-chronic patients. Genes involved in synaptic organization and transmission, especially in glutamatergic synapse, were highly enriched in PRS-SCZ genes, suggesting the dysfunction of synapses in schizophrenia. These results help to understand the molecular mechanism underlying schizophrenia and related brain dysfunction.
Collapse
Affiliation(s)
- Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Zeyu Jiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Yue Qin
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- School of Life Sciences, Fudan University, Shanghai, China; Human Phoneme Institute, Fudan University, Shanghai, China
| | - Li Jin
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Fei Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, China.
| | - Xiaohong Gong
- School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Qiu X, Xu W, Zhang R, Yan W, Ma W, Xie S, Zhou M. Regional Homogeneity Brain Alterations in Schizophrenia: An Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig 2021; 18:709-717. [PMID: 34333896 PMCID: PMC8390947 DOI: 10.30773/pi.2021.0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Resting state functional magnetic resonance imaging (rsfMRI) provides a lot of evidence for local abnormal brain activity in schizophrenia, but the results are not consistent. Our aim is to find out the consistent abnormal brain regions of the patients with schizophrenia by using regional homogeneity (ReHo), and indirectly understand the degree of brain damage of the patients with drug-naive first episode schizophrenia (Dn-FES) and chronic schizophrenia. METHODS We performed the experiment by activation likelihood estimation (ALE) software to analysis the differences between people with schizophrenia group (all schizophrenia group and chronic schizophrenia group) and healthy controls. RESULTS Thirteen functional imaging studies were included in quantitative meta-analysis. All schizophrenia group showed decreased ReHo in bilateral precentral gyrus (PreCG) and left middle occipital gyrus (MOG), and increased ReHo in bilateral superior frontal gyrus (SFG) and right insula. Chronic schizophrenia group showed decreased ReHo in bilateral MOG, right fusiform gyrus, left PreCG, left cerebellum, right precuneus, left medial frontal gyrus and left anterior cingulate cortex (ACC). No significant increased brain areas were found in patients with chronic schizophrenia. CONCLUSION Our findings suggest that patients with chronic schizophrenia have more extensive brain damage than FES, which may contribute to our understanding of the progressive pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Shen J, Yang B, Xie Z, Wu H, Zheng Z, Wang J, Wang P, Zhang P, Li W, Ye Z, Yu C. Cell-Type-Specific Gene Modules Related to the Regional Homogeneity of Spontaneous Brain Activity and Their Associations With Common Brain Disorders. Front Neurosci 2021; 15:639527. [PMID: 33958982 PMCID: PMC8093778 DOI: 10.3389/fnins.2021.639527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mapping gene expression profiles to neuroimaging phenotypes in the same anatomical space provides opportunities to discover molecular substrates for human brain functional properties. Here, we aimed to identify cell-type-specific gene modules associated with the regional homogeneity (ReHo) of spontaneous brain activity and their associations with brain disorders. Fourteen gene modules were consistently associated with ReHo in the three datasets, five of which showed cell-type-specific expression (one neuron-endothelial module, one neuron module, one astrocyte module and two microglial modules) in two independent cell series of the human cerebral cortex. The neuron-endothelial module was mainly enriched for transporter complexes, the neuron module for the synaptic membrane, the astrocyte module for amino acid metabolism, and microglial modules for leukocyte activation and ribose phosphate biosynthesis. In enrichment analyses of cell-type-specific modules for 10 common brain disorders, only the microglial module was significantly enriched for genes obtained from genome-wide association studies of multiple sclerosis (MS) and Alzheimer's disease (AD). The ReHo of spontaneous brain activity is associated with the gene expression profiles of neurons, astrocytes, microglia and endothelial cells. The microglia-related genes associated with MS and AD may provide possible molecular substrates for ReHo abnormality in both brain disorders.
Collapse
Affiliation(s)
- Junlin Shen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhonghua Xie
- Department of Mathematics, School of Science, Tianjin University of Science and Technology, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhanye Zheng
- Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jianhua Wang
- Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Li
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Fatima W, Riaz S, Aiman Shahzad M, Naz Z, Mahmood S, Hasnain S. Chromosomal region 1q24.1 is associated with increased risk of schizophrenia in Pakistani population. Gene 2020; 734:144390. [PMID: 31987904 DOI: 10.1016/j.gene.2020.144390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a stressful, chronic and in many cases incorrigible psychological disorder. Till now no biomarker is available for diagnosis of this condition and diagnosis is done purely on psychiatric bases. A strong genetic association of human genome region 1q24.1 is implicated with onset of schizophrenia in many studies. Present study is first from Pakistan to report effect of this locus in transmission and liaison of schizophrenia in Pakistani population. For this analysis 300 samples were genotyped of four SNPs, rs1417584, rs1954175, rs821616 and rs113012343 that were selected on basis of minor allele frequency and effects on schizophrenia. Haplotype and transmission disequilibrium analysis was also performed on data. Association of SNPs revealed a significant relation between MAF of rs1417584 and schizophrenia in given samples (χ2 5.57; p 0.02). Haplotype association led to formation of three significant blocks TCAG (OR 20.06), TTAG (OR 4.65) and CCTG (OR 26.17) for rs1417584, rs1954175, rs821616 and rs113012343 that were expected to cause schizophrenia in said combinations. rs1417584, rs1954175 and rs821616 were found to be in a linkage block based on D' value (p < 0.0001) with 22% co inheritance alongside disease onset. This block was represented by 325 kb on chromosome 1. It is concluded from this study that this 325 Kb region can be considered prognostic marker for schizophrenia development in Pakistani population.
Collapse
Affiliation(s)
- Warda Fatima
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| | - Sabeen Riaz
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | | | - Zara Naz
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saqib Mahmood
- Department of Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|