1
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Mercadante S, Bellastella A. Chrono-Endocrinology in Clinical Practice: A Journey from Pathophysiological to Therapeutic Aspects. Life (Basel) 2024; 14:546. [PMID: 38792568 PMCID: PMC11121809 DOI: 10.3390/life14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This review was aimed at collecting the knowledge on the pathophysiological and clinical aspects of endocrine rhythms and their implications in clinical practice, derived from the published literature and from some personal experiences on this topic. We chose to review, according to the PRISMA guidelines, the results of original and observational studies, reviews, meta-analyses and case reports published up to March 2024. Thus, after summarizing the general aspects of biological rhythms, we will describe the characteristics of several endocrine rhythms and the consequences of their disruption, paying particular attention to the implications in clinical practice. Rhythmic endocrine secretions, like other physiological rhythms, are genetically determined and regulated by a central hypothalamic CLOCK located in the suprachiasmatic nucleus, which links the timing of the rhythms to independent clocks, in a hierarchical organization for the regulation of physiology and behavior. However, some environmental factors, such as daily cycles of light/darkness, sleep/wake, and timing of food intake, may influence the rhythm characteristics. Endocrine rhythms are involved in important physiological processes and their disruption may cause several disorders and also cancer. Thus, it is very important to prevent disruptions of endocrine rhythms and to restore a previously altered rhythm by an early corrective chronotherapy.
Collapse
Affiliation(s)
| | - Antonio Bellastella
- Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|
3
|
Meyer N, Lok R, Schmidt C, Kyle SD, McClung CA, Cajochen C, Scheer FAJL, Jones MW, Chellappa SL. The sleep-circadian interface: A window into mental disorders. Proc Natl Acad Sci U S A 2024; 121:e2214756121. [PMID: 38394243 PMCID: PMC10907245 DOI: 10.1073/pnas.2214756121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, LondonWC1N 3HR, United Kingdom
- Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège4000, Belgium
| | - Simon D. Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| | - Christian Cajochen
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, BaselCH-4002, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, BaselCH-4055, Switzerland
| | - Frank A. J. L. Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA02115
| | - Matthew W. Jones
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Sarah L. Chellappa
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Petrova NN. [Metabolic syndrome in clinical psychiatric practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:13-20. [PMID: 39269292 DOI: 10.17116/jnevro202412408113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A literature review in PubMed and Google databases was performed. Inclusion criteria: randomized clinical trials, meta-analyses and systematic reviews, relevant full-text articles on metabolic syndrome (MS) in patients with schizophrenia. Exclusion criteria: articles of poor quality. The terminology of the article corresponds to that used in the publications included in the review. The review substantiates the relevance of the problem of MS, discloses the concept and discusses its criteria, provides data on the prevalence of MS in patients with schizophrenia, discusses the relationship between MS and schizophrenia, MS and cognitive impairment in schizophrenia, and describes metabolic changes in patients with a first episode of psychosis or early stage schizophrenia. Recommendations on therapeutic tactics in the development of metabolic syndrome in patients with schizophrenia are given.
Collapse
Affiliation(s)
- N N Petrova
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
5
|
Zapata RC, Silver A, Yoon D, Chaudry B, Libster A, McCarthy MJ, Osborn O. Antipsychotic-induced weight gain and metabolic effects show diurnal dependence and are reversible with time restricted feeding. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:70. [PMID: 36042214 PMCID: PMC9427943 DOI: 10.1038/s41537-022-00276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Antipsychotic drugs (AP) are highly efficacious treatments for psychiatric disorders but are associated with significant metabolic side-effects. The circadian clock maintains metabolic homeostasis by sustaining daily rhythms in feeding, fasting and hormone regulation but how circadian rhythms interact with AP and its associated metabolic side-effects is not well-known. We hypothesized that time of AP dosing impacts the development of metabolic side-effects. Weight gain and metabolic side-effects were compared in C57Bl/6 mice and humans dosed with APs in either the morning or evening. In mice, AP dosing at the start of the light cycle/rest period (AM) resulted in significant increase in food intake and weight gain compared with equivalent dose before the onset of darkness/active period (PM). Time of AP dosing also impacted circadian gene expression, metabolic hormones and inflammatory pathways and their diurnal expression patterns. We also conducted a retrospective examination of weight and metabolic outcomes in patients who received risperidone (RIS) for the treatment of serious mental illness and observed a significant association between time of dosing and severity of RIS-induced metabolic side-effects. Time restricted feeding (TRF) has been shown in both mouse and some human studies to be an effective therapeutic intervention against obesity and metabolic disease. We demonstrate, for the first time, that TRF is an effective intervention to reduce AP-induced metabolic side effects in mice. These studies identify highly effective and translatable interventions with potential to mitigate AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Rizaldy C. Zapata
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Allison Silver
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Dongmin Yoon
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Besma Chaudry
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Avraham Libster
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093 USA
| | - Olivia Osborn
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
6
|
Shamshoum H, Medak KD, McKie GL, Hahn MK, Wright DC. Fasting or the short-term consumption of a ketogenic diet protects against antipsychotic-induced hyperglycemia in mice. J Physiol 2022; 600:2713-2728. [PMID: 35507699 DOI: 10.1113/jp282922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Antipsychotic medications cause rapid and robust increases in blood glucose Cotreatment approaches to offset these harmful metabolic side effects have not been identified We demonstrate that fasting or the consumption or a short-term ketogenic diet, but not treatment with βHB or oral ketone esters, protects against acute antipsychotic induced hyperglycemia Protective effects of fasting and ketogenic diets were paralleled by reductions in serum glucagon, but not improvements in whole body insulin action ABSTRACT: Antipsychotic (AP) medications, such as olanzapine (OLZ), are used in the treatment of schizophrenia and a growing number of "off-label" conditions. A single dose of OLZ causes robust increases in blood glucose within minutes following treatment. The purpose of the current study was to investigate if interventions which increase circulating ketone bodies (fasting, βHB, ketone esters or a ketogenic diet) would be sufficient to protect against acute metabolic side effects of OLZ. We demonstrate that fasting or the short-term consumption of a ketogenic diet (KD) protects against OLZ-induced hyperglycemia, independent of alterations in whole body insulin action, and in parallel with a blunted rise in serum glucagon. Interestingly, the effects of fasting and ketogenic diets were not recapitulated by acutely increasing circulating concentrations of ketone bodies through treatment with βHB or oral ketone esters, approaches which increase ketone bodies to physiological or supra-physiological levels respectively. Collectively our findings demonstrate that fasting and the short-term consumption of a KD can protect against acute AP-induced perturbations in glucose homeostasis, whereas manipulations which acutely increase circulating ketone bodies do not elicit the same beneficial effects. Abstract figure legend Model for fasting and ketogenic diet to protect against OLZ-induced hyperglycemia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Chyr J, Gong H, Zhou X. DOTA: Deep Learning Optimal Transport Approach to Advance Drug Repositioning for Alzheimer's Disease. Biomolecules 2022; 12:196. [PMID: 35204697 PMCID: PMC8961573 DOI: 10.3390/biom12020196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States and incurring a substantial global healthcare cost. Unfortunately, current treatments are only palliative and do not cure AD. There is an urgent need to develop novel anti-AD therapies; however, drug discovery is a time-consuming, expensive, and high-risk process. Drug repositioning, on the other hand, is an attractive approach to identify drugs for AD treatment. Thus, we developed a novel deep learning method called DOTA (Drug repositioning approach using Optimal Transport for Alzheimer's disease) to repurpose effective FDA-approved drugs for AD. Specifically, DOTA consists of two major autoencoders: (1) a multi-modal autoencoder to integrate heterogeneous drug information and (2) a Wasserstein variational autoencoder to identify effective AD drugs. Using our approach, we predict that antipsychotic drugs with circadian effects, such as quetiapine, aripiprazole, risperidone, suvorexant, brexpiprazole, olanzapine, and trazadone, will have efficacious effects in AD patients. These drugs target important brain receptors involved in memory, learning, and cognition, including serotonin 5-HT2A, dopamine D2, and orexin receptors. In summary, DOTA repositions promising drugs that target important biological pathways and are predicted to improve patient cognition, circadian rhythms, and AD pathogenesis.
Collapse
Affiliation(s)
- Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Haoran Gong
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Wei H, Zapata RC, Lopez-Valencia M, Aslanoglou D, Farino ZJ, Benner V, Osborn O, Freyberg Z, McCarthy MJ. Dopamine D 2 receptor signaling modulates pancreatic beta cell circadian rhythms. Psychoneuroendocrinology 2020; 113:104551. [PMID: 31884319 PMCID: PMC7787223 DOI: 10.1016/j.psyneuen.2019.104551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Abstract
Antipsychotic drugs (APD) have clinically important, adverse effects on metabolism that limit their therapeutic utility. Pancreatic beta cells produce dopamine and express the D2 dopamine receptor (D2R). As D2R antagonists, APDs alter glucose-stimulated insulin secretion, indicating that dopamine likely plays a role in APD-induced metabolic dysfunction. Insulin secretion from beta cells is also modulated by the circadian clock. Disturbed circadian rhythms cause metabolic disturbances similar to those observed in APD-treated subjects. Given the importance of dopamine and circadian rhythms for beta cells, we hypothesized that the beta cell dopamine system and circadian clock interact and dually regulate insulin secretion, and that circadian manipulations may alter the metabolic impact of APDs. We measured circadian rhythms, insulin release, and the impact of dopamine upon these processes in beta cells using bioluminescent reporters. We then assessed the impact of circadian timing on weight gain and metabolic outcomes in mice treated with the APD sulpiride at the onset of light or dark. We found that molecular components of the dopamine system were rhythmically expressed in beta cells. D2R stimulation by endogenous dopamine or the agonist bromocriptine reduced circadian rhythm amplitude, and altered the temporal profile of insulin secretion. Sulpiride caused greater weight gain and hyperinsulinemia in mice when given in the dark phase compared to the light phase. D2R-acting drugs affect circadian-dopamine interactions and modulate beta cell metabolic function. These findings identify circadian timing as a novel and important mechanism underlying APD-induced metabolic dysfunction, offering new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Heather Wei
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA
| | - Rizaldy C. Zapata
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerie Benner
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA,Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA,Corresponding author at: VA San Diego Healthcare System, 3350 La Jolla Village Dr MC116A, San Diego, CA 92161 USA
| |
Collapse
|
9
|
Abstract
We found that orders and initial doses of treatment in the hospital were strongly influenced by time of day, regardless of drug type, diagnosis, or care unit. As the first large-scale account of 24-h rhythms in hospital medicine, this study identifies a potential operational barrier to best clinical care. Clinical decisions should be made around the clock; pain, infection, hypertensive crisis, and other conditions do not occur selectively in the morning. Systemic bias in the timing of medicine may also conflict with circadian biology, which can influence when certain treatments are most effective or safe. Our findings suggest that time of day in hospital operations deserves further consideration. Hospitals operate 24 h a day, and it is assumed that important clinical decisions occur continuously around the clock. However, many aspects of hospital operation occur at specific times of day, including medical team rounding and shift changes. It is unclear whether this impacts patient care, as no studies have addressed this. We analyzed the daily distribution of ∼500,000 doses of 12 separate drugs in 1,546 inpatients at a major children’s hospital in the United States from 2010 to 2017. We tracked both order time (when a care provider places an electronic request for a drug) and dosing time (when the patient receives the drug). Order times were time-of-day−dependent, marked by distinct morning-time surges and overnight lulls. Nearly one-third of all 103,847 orders for treatment were placed between 8:00 AM and 12:00 PM. First doses from each order were also rhythmic but shifted by 2 h. These 24-h rhythms in orders and first doses were remarkably consistent across drugs, diagnosis, and hospital units. This rhythm in hospital medicine coincided with medical team rounding time, not necessarily immediate medical need. Lastly, we show that the clinical response to hydralazine, an acute antihypertensive, is dosing time-dependent and greatest at night, when the fewest doses were administered. The prevailing dogma is that hospital treatment is administered as needed regardless of time of day. Our findings challenge this notion and reveal a potential operational barrier to best clinical care.
Collapse
|
10
|
Bellastella G, De Bellis A, Maiorino MI, Paglionico VA, Esposito K, Bellastella A. Endocrine rhythms and sport: it is time to take time into account. J Endocrinol Invest 2019; 42:1137-1147. [PMID: 30924095 DOI: 10.1007/s40618-019-01038-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Studies of time-related biological phenomena have contributed to establishing a new scientific discipline, the chronobiology, which considers biological phenomena in relation to time. Sports activity profoundly affects the temporal organization of the organism and endocrine rhythms play a key role in the chronoorganization of individuals and are particularly important for correct physical activity. Correctly reading rhythmic hormonal variations of the human organism opens new horizons to sports medicine. OBJECTIVE This review is aimed at clarifying the relationship between endocrine rhythms and sports activities on the basis of the latest data in the literature. METHOD Data acquisition was obtained from three databases (PubMed, Scopus and SPORTDiscus), paying particular attention to reviews, meta-analysis, original and observational studies on this issue. RESULTS After the description of the general characteristics and parameters of biological rhythms, the main endocrine rhythms will be described, highlighting in particular the interrelationships with sports activity and focusing on the factors which can affect negatively their characteristics and consequently the psychophysical performances of the athletes. CONCLUSION Knowledge of this issue may allow establishing the best form of competitive or amateur activity, through the collaboration of an informed athlete and a sports physician attentive to biological rhythms. By taking into account that alteration of physiological rhythmic temporal organization can favour the onset of important diseases, including cancer, this will lead to the expected performances without impairing the correct chronoorganization of the athlete.
Collapse
Affiliation(s)
- G Bellastella
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy.
| | - A De Bellis
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - M I Maiorino
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - V A Paglionico
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - K Esposito
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - A Bellastella
- University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Abstract
Fundamental aspects of neurobiology are time-of-day regulated. Therefore, it is not surprising that neurodegenerative and psychiatric diseases are accompanied by sleep and circadian rhythm disruption. Although the direction of causation remains unclear, abnormal sleep-wake patterns often occur early in disease, exacerbate progression, and are a common primary complaint from patients. Circadian medicine incorporates knowledge of 24-hour biological rhythms to improve treatment. This article highlights how research and technologic advances in circadian biology might translate to improved patient care.
Collapse
|