1
|
Bissonnette JN, Anderson TJ, Crocker CE, Tibbo PG, Salisbury DF, Fisher DJ. Examining the Complex Mismatch Negativity in Early Phase Psychosis Using the Dual Rule Paradigm. Clin EEG Neurosci 2025; 56:91-99. [PMID: 39150248 PMCID: PMC11664881 DOI: 10.1177/15500594241273287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Using electroencephalography (EEG) to examine the simple mismatch negativity (MMN), a marker of auditory cortex function, has been of great interest in the exploration of biomarkers for psychotic illness. Despite many studies reporting MMN deficits in chronic schizophrenia, there are inconsistent reports of MMN reductions in the early phases of psychotic illness, suggesting the MMN elicited by traditional paradigms may not be a sensitive enough measure of vulnerability to be used as a biomarker. Recently, a more computationally complex measure of auditory cortex function (the complex mismatch negativity; cMMN) has been hypothesized to provide a more sensitive marker of illness vulnerability. The current study employed a novel dual rule paradigm, in which two pattern rules are established and violated, to examine the cMMN in 14 individuals with early phase psychosis (EPP, < 5 years illness) and 15 healthy controls (HC). Relationships between cMMN waveforms, symptom severity, and measures of functioning were explored. We found reductions of cMMN amplitudes at the site of maximal amplitude in EPP (p = .017) with large effect sizes (Hedges' g = 0.96). This study is an early step in the exploration of the cMMN as a biomarker for psychosis. Our results provide evidence that the dual rule cMMN paradigm shows promise as a method for cMMN elicitation that captures more subtle neurofunctional changes in the early stages of illness.
Collapse
Affiliation(s)
- Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Candice E. Crocker
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dean F. Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek J. Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Francis AM, Slaunwhite-Hay S, Dempster K, Jaworska N, Tibbo PG, Fisher DJ. The Complex Pattern Mismatch Negativity as a Potential Indicator of Psychosis Across all Phases of Illness: A Meta-Analysis. Clin EEG Neurosci 2025; 56:72-82. [PMID: 39094550 PMCID: PMC11664891 DOI: 10.1177/15500594241264870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 08/04/2024]
Abstract
Over the past decade, there has been extensive research on the mismatch negativity (MMN) and its promise as a biomarker of illness in people with schizophrenia (SZ). Nevertheless, when attempting to assess the early stages of illness progression, the utility of MMN has been inconsistent. Recently, researchers have been investigating a more advanced MMN paradigm (the complex MMN [cMMN]) which is believed to index higher-order cognitive processing and has been suggested to be a more effective indicator of the early phases of SZ. The cMMN is defined as a paradigm that relies on alterations within a pre-established pattern of stimuli. In this meta-analysis, we investigated cMMN deficits in individuals with SZ, including an analysis involving those in the first 5 years of illness. Our search also included individuals with bipolar disorder who experience psychosis; however, no related papers were found and thus, no findings are reported. Our findings indicate a small/moderate effect (d = 0.47), suggesting that individuals with SZ exhibit reduced cMMN amplitudes compared to individuals without SZ. Interestingly, this effect seems to be more pronounced in individuals within the first 5 years of their illness (d = 0.58), suggesting that cMMN might be a more sensitive biomarker in the early phases of SZ compared to traditional paradigms.
Collapse
Affiliation(s)
| | | | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Natalia Jaworska
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Derek J. Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| |
Collapse
|
3
|
Salisbury DF, López Caballero F, Coffman BA. Development of Biomarkers Potentially Sensitive to Early Psychosis Using Mismatch Negativity (MMN) to Complex Pattern Deviations. Clin EEG Neurosci 2025; 56:83-90. [PMID: 38755955 PMCID: PMC11910136 DOI: 10.1177/15500594241254896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Infrequent stimulus deviations from repetitive sequences elicit mismatch negativity (MMN) even passively, making MMN practical for clinical applications. Auditory MMN is typically elicited by a change in one (or more) physical stimulus parameters (eg, pitch, duration). This lower-order simple MMN (sMMN) is impaired in long-term schizophrenia. However, sMMN contains activity from release from stimulus adaptation, clouding its face validity as purely deviance-related. More importantly, it is unreliably reduced in samples of first-episode psychosis, limiting its utility as a biomarker. Complex pattern-deviant MMN (cMMN) tasks, which elicit early and late responses, are based on higher-order abstractions and better isolate deviance detection. Their abstract nature may increase the sensitivity to processing deficits in early psychosis. However, both the early and late cMMNs are small, limiting separation between healthy and psychotic samples. In 29 healthy individuals, we tested a new dual-rule cMMN paradigm to assess additivity of deviance. Sounds alternated lateralization between left and right, and low and high pitches, creating a left-low, right-high alternating pattern. Deviants were a repeated left-low, violating lateralization and pitch patterns. Early and late cMMNs on the dual-rule task were significantly larger than those on the one-rule extra tone cMMN task (P < .05). Further, the dual-rule early cMMN was not significantly smaller than pitch or duration sMMNs (P > .48, .28, respectively). These results demonstrate additivity for cMMN pattern-violating rules. This increase in cMMN amplitude should increase group difference effect size, making it a prime candidate for a biomarker of disease presence at first psychotic episode, and perhaps even prior to the emergence of psychosis.
Collapse
Affiliation(s)
- Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fran López Caballero
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Muñoz-Caracuel M, Muñoz V, Ruiz-Martínez FJ, Vázquez Morejón AJ, Gómez CM. Systemic neurophysiological signals of auditory predictive coding. Psychophysiology 2024; 61:e14544. [PMID: 38351668 DOI: 10.1111/psyp.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 05/16/2024]
Abstract
Predictive coding framework posits that our brain continuously monitors changes in the environment and updates its predictive models, minimizing prediction errors to efficiently adapt to environmental demands. However, the underlying neurophysiological mechanisms of these predictive phenomena remain unclear. The present study aimed to explore the systemic neurophysiological correlates of predictive coding processes during passive and active auditory processing. Electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and autonomic nervous system (ANS) measures were analyzed using an auditory pattern-based novelty oddball paradigm. A sample of 32 healthy subjects was recruited. The results showed shared slow evoked potentials between passive and active conditions that could be interpreted as automatic predictive processes of anticipation and updating, independent of conscious attentional effort. A dissociated topography of the cortical hemodynamic activity and distinctive evoked potentials upon auditory pattern violation were also found between both conditions, whereas only conscious perception leading to imperative responses was accompanied by phasic ANS responses. These results suggest a systemic-level hierarchical reallocation of predictive coding neural resources as a function of contextual demands in the face of sensory stimulation. Principal component analysis permitted to associate the variability of some of the recorded signals.
Collapse
Affiliation(s)
- Manuel Muñoz-Caracuel
- Department of Experimental Psychology, University of Seville, Seville, Spain
- Mental Health Unit, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Vanesa Muñoz
- Department of Experimental Psychology, University of Seville, Seville, Spain
| | | | - Antonio J Vázquez Morejón
- Mental Health Unit, Hospital Universitario Virgen del Rocio, Seville, Spain
- Department of Personality, Evaluation and Psychological Treatments, University of Seville, Seville, Spain
| | - Carlos M Gómez
- Department of Experimental Psychology, University of Seville, Seville, Spain
| |
Collapse
|
5
|
Kern FB, Chao ZC. Short-term neuronal and synaptic plasticity act in synergy for deviance detection in spiking networks. PLoS Comput Biol 2023; 19:e1011554. [PMID: 37831721 PMCID: PMC10599548 DOI: 10.1371/journal.pcbi.1011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Sensory areas of cortex respond more strongly to infrequent stimuli when these violate previously established regularities, a phenomenon known as deviance detection (DD). Previous modeling work has mainly attempted to explain DD on the basis of synaptic plasticity. However, a large fraction of cortical neurons also exhibit firing rate adaptation, an underexplored potential mechanism. Here, we investigate DD in a spiking neuronal network model with two types of short-term plasticity, fast synaptic short-term depression (STD) and slower threshold adaptation (TA). We probe the model with an oddball stimulation paradigm and assess DD by evaluating the network responses. We find that TA is sufficient to elicit DD. It achieves this by habituating neurons near the stimulation site that respond earliest to the frequently presented standard stimulus (local fatigue), which diminishes the response and promotes the recovery (global fatigue) of the wider network. Further, we find a synergy effect between STD and TA, where they interact with each other to achieve greater DD than the sum of their individual effects. We show that this synergy is caused by the local fatigue added by STD, which inhibits the global response to the frequently presented stimulus, allowing greater recovery of TA-mediated global fatigue and making the network more responsive to the deviant stimulus. Finally, we show that the magnitude of DD strongly depends on the timescale of stimulation. We conclude that highly predictable information can be encoded in strong local fatigue, which allows greater global recovery and subsequent heightened sensitivity for DD.
Collapse
Affiliation(s)
- Felix Benjamin Kern
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Zenas C. Chao
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Dondé C, Kantrowitz JT, Medalia A, Saperstein AM, Balla A, Sehatpour P, Martinez A, O'Connell MN, Javitt DC. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications. Neurosci Biobehav Rev 2023; 148:105098. [PMID: 36796472 PMCID: PMC10106448 DOI: 10.1016/j.neubiorev.2023.105098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Cognitive deficits are a key feature of the disorder and a primary cause of long-term disability. Over the past decades, significant literature has accumulated demonstrating impairments in early auditory perceptual processes in schizophrenia. In this review, we first describe early auditory dysfunction in schizophrenia from both a behavioral and neurophysiological perspective and examine their interrelationship with both higher order cognitive constructs and social cognitive processes. Then, we provide insights into underlying pathological processes, especially in relationship to glutamatergic and N-methyl-D-aspartate receptor (NMDAR) dysfunction models. Finally, we discuss the utility of early auditory measures as both treatment targets for precision intervention and as translational biomarkers for etiological investigation. Altogether, this review points out the crucial role of early auditory deficits in the pathophysiology of schizophrenia, in addition to major implications for early intervention and auditory-targeted approaches.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, F-38000 Grenoble, France; Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France; Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Alice Medalia
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Alice M Saperstein
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Pejman Sehatpour
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Antigona Martinez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
7
|
de Bustamante Simas ML, Dos Santos NRM, Lacerda AM. Auditory perceptual discomfort and low-hearing tolerance in the first episode psychosis. PSICOLOGIA, REFLEXAO E CRITICA : REVISTA SEMESTRAL DO DEPARTAMENTO DE PSICOLOGIA DA UFRGS 2022; 35:20. [PMID: 35819653 PMCID: PMC9276868 DOI: 10.1186/s41155-022-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Awareness of perceptual and sensory changes that might occur in visual, auditory, proprioception, and other senses, in the early stages towards the First Episode Psychosis (FEP), and their subsequent sensorial evolution as the disturb progresses deeper into an acute episode, might be a key element for interrupting the process. In the present study, we investigated hearing discomfort/tolerance to 16 given sound streams. Sixteen people diagnosed with FEP, participated in the experiment. Sixteen frequency sweeps varying in modulation envelopes (sawtooth, sine), order (ascending, descending), duration (4s, 8s), and range (50–8000 Hz, 2–8 kHz) were presented randomly, but always in the same sequence, to FEP and healthy controls (HC). The level of discomfort was estimated by the participant by making a mark across a continuous line whose extremes read “nothing bad” (left) and “too bad” (right). Results showed that ascending sine pure frequency sweeps (p < 0.01) and descending sine pure frequencies sweeps (p < 0.01) caused the maximum discomfort in FEP. Other variables also showed differences between FEP and HC, and FEP were always more intolerant to such pure frequency sweeps than HC. We conclude that this might be useful for very early assessment of people at risk, people with FEP, and people with schizophrenia.
Collapse
Affiliation(s)
- Maria Lúcia de Bustamante Simas
- Laboratório de Percepção Visual, Programa da Pós Graduação em Psicologia, Departamento de Psicologia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Av da Arquitetura s/n CFCH 9º Andar, Recife, PE, CEP.: 50740-550, Brasil.
| | - Naianna Ribeiro Mocelin Dos Santos
- Laboratório de Percepção Visual, Programa da Pós Graduação em Psicologia, Departamento de Psicologia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Av da Arquitetura s/n CFCH 9º Andar, Recife, PE, CEP.: 50740-550, Brasil
| | - Aline Mendes Lacerda
- Laboratório de Percepção Visual, Programa da Pós Graduação em Psicologia, Departamento de Psicologia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Av da Arquitetura s/n CFCH 9º Andar, Recife, PE, CEP.: 50740-550, Brasil
| |
Collapse
|
8
|
Mi L, Wang L, Li X, She S, Li H, Huang H, Zhang J, Liu Y, Zhao J, Ning Y, Zheng Y. Reduction of phonetic mismatch negativity may depict illness course and predict functional outcomes in schizophrenia. J Psychiatr Res 2021; 137:290-297. [PMID: 33735719 DOI: 10.1016/j.jpsychires.2021.02.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023]
Abstract
Schizophrenia (SZ) is characterized by a series of cognitive impairments, including automatic processing impairment of basic auditory information, indexed by mismatch negativity (MMN). Existing studies mainly focus on MMN induced by deviant of single acoustic features, and relatively few studies have focused on complex acoustic stimuli, especially speech-induced MMN. Many cognitive impairments in SZ are related to speech function. Thus, the present study aimed to examine the reduction of phonetic MMN in SZ as a potential biomarker and its relationship with illness course and functional outcomes. Electroencephalogram (EEG) signals were recorded from 32 SZ and 32 healthy controls (HC) in a double oddball paradigm, with /da/ as the standard stimulus and /ba/ and /du/ as the deviant stimuli. MMN was computed for vowel and consonant deviants separately. Clinical symptoms were assessed using the Positive and Negative Symptom Rating Scale (PANSS). Illness duration and illness relapse were acquired by combining clinical interviews and electronic medical records. Functional outcomes were assessed using the Global Assessment of Functioning scale (GAF). Compared with HC, SZ showed lower amplitudes of phonetic MMN, especially for vowel deviants. In addition, the MMN amplitude of the vowel deviant was significantly correlated with illness duration, illness relapse, and functional outcomes among patients with SZ. These findings indicate that the pre-attentive automatic phonetic processing of SZ was impaired for both consonants and vowels, while the vowel processing deficit may be the key speech processing deficit in SZ, which could depict the illness course and predict the functional outcomes.
Collapse
Affiliation(s)
- Lin Mi
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Le Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Xuanzi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Haijing Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Huiyan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Jinfang Zhang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Yi Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Jingping Zhao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
| |
Collapse
|
9
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:653642. [PMID: 34017273 PMCID: PMC8129021 DOI: 10.3389/fpsyt.2021.653642] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.
Collapse
Affiliation(s)
- Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Francesco Brando
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|