1
|
Çolak-Geniş E, Özdemir Erdoğan M, Çam FS, Aydemir Ö, Akin F, Gerik-Celebi HB, Solak M. Investigation of Genetic Changes in Three Families with Bipolar Disease. Mol Syndromol 2024; 15:464-473. [PMID: 39634238 PMCID: PMC11614438 DOI: 10.1159/000539115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/25/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Bipolar disorder (BD) is a serious psychiatric disorder characterized by mood swings (depressive and manic phases) that can strongly affect the quality of life of patients and their families. The lifetime prevalence of BD in the general population is 1%. The pathogenesis of BD is unknown; however, comprehensive epidemiological studies have shown that both genetic and environmental factors play a role. Within the scope of the current project, we aim to determine the genetic change responsible for the emergence of the disease and to make a genotype-phenotype correlation. Methods In this study, we evaluated single nucleotide gene variants in three families (n = 6 patients) with bipolar disorder using whole-exome sequencing. Results Seven genes (TMTC1, DGKH, STARD9, ITIH1, MARCKS, CSMD1, and ADRA2B) were identified as possibly associated with BPD. In addition, two novel variants were presented in the TMTC1 (c.1214T>G) and STARD9 (c.8288C>G) genes. Conclusion Prospective studies in larger patient groups are required to determine the role of these genes in the etiology of the disease and their potential in diagnosis and treatment. To the best of our knowledge, this is the first methodically comprehensive study conducted in our country and can contribute to the identification of genes that may be associated with BD and the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Esra Çolak-Geniş
- Department of Medical Genetics, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Müjdan Özdemir Erdoğan
- Department of Medical Genetics, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Fethi Sırrı Çam
- Department of Medical Genetics, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Ömer Aydemir
- Department of Psychiatry, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Funda Akin
- Department of Psychiatry, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | | | - Mustafa Solak
- Department of Medical Genetics, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Niu YM, Zhang J, Tang H, Cao LH, Jiang TY, Hu YY. Association between DRD2/ANKK1 rs1800497 C > T polymorphism and post-traumatic stress disorder susceptibility: a multivariate meta-analysis. Front Neurosci 2023; 17:1102573. [PMID: 37274216 PMCID: PMC10232825 DOI: 10.3389/fnins.2023.1102573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/10/2023] [Indexed: 06/06/2023] Open
Abstract
Background Previous studies have suggested that the DRD2/ANKK1 rs1800497 C > T polymorphism plays a critical role in the risk of post-traumatic stress disorder (PTSD). However, published data are inconsistent or even contradictory. Therefore, we conducted a meta-analysis to explore the underlying correlation between the rs1800497 C > T polymorphism and PTSD risk. Materials and methods A total of five online databases were searched, and all related studies were reviewed up to 1 October 2022. Critical information was extracted, and quality assessment was conducted for all included studies. Multivariate meta-analyses were performed for the genetic model choice, and the odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to examine the statistical power of the genetic models. In addition, heterogeneity, sensitivity, cumulative analysis, and publication bias were analyzed to guarantee statistical power. Result Overall, 12 observational studies involving 5,515 subjects were included and analyzed in this meta-analysis. Multivariate analysis indicated that a co-dominant genetic model was most likely the best choice. Pooled results revealed an elevated PTSD risk in mutated homozygote TT carriers in the general population (TT vs. CC: OR = 1.73, 95% CI = 1.14-2.62, P = 0.01, I2 = 58.9%) and other specific subgroups. Moreover, similar results were observed in other genetic models using univariate analysis. Conclusion Current evidence suggests that the DRD2/ANKK1 rs1800497 C > T polymorphism may contribute to PTSD susceptibility.
Collapse
Affiliation(s)
- Yu-Ming Niu
- Department of Stomatology and Center for Evidence-Based Medicine and Clinical Research, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
- Department of Psychiatry and Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, Guangdong Province, China
- Department of Psychiatry, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jie Zhang
- Department of Psychiatry and Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, Guangdong Province, China
- Department of Psychiatry, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hong Tang
- Department of Psychiatry, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Lu-Hua Cao
- Information Department, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Ting-Yun Jiang
- Department of Psychiatry and Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, Guangdong Province, China
| | - Yuan-Yuan Hu
- Department of Stomatology and Center for Evidence-Based Medicine and Clinical Research, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
3
|
Huang Z, Merrihew GE, Larson EB, Park J, Plubell D, Fox EJ, Montine KS, Latimer CS, Dirk Keene C, Zou JY, MacCoss MJ, Montine TJ. Brain proteomic analysis implicates actin filament processes and injury response in resilience to Alzheimer's disease. Nat Commun 2023; 14:2747. [PMID: 37173305 PMCID: PMC10182086 DOI: 10.1038/s41467-023-38376-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Resilience to Alzheimer's disease is an uncommon combination of high disease burden without dementia that offers valuable insights into limiting clinical impact. Here we assessed 43 research participants meeting stringent criteria, 11 healthy controls, 12 resilience to Alzheimer's disease and 20 Alzheimer's disease with dementia and analyzed matched isocortical regions, hippocampus, and caudate nucleus by mass spectrometry-based proteomics. Of 7115 differentially expressed soluble proteins, lower isocortical and hippocampal soluble Aβ levels is a significant feature of resilience when compared to healthy control and Alzheimer's disease dementia groups. Protein co-expression analysis reveals 181 densely-interacting proteins significantly associated with resilience that were enriched for actin filament-based processes, cellular detoxification, and wound healing in isocortex and hippocampus, further supported by four validation cohorts. Our results suggest that lowering soluble Aβ concentration may suppress severe cognitive impairment along the Alzheimer's disease continuum. The molecular basis of resilience likely holds important therapeutic insights.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Deanna Plubell
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Edward J Fox
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen S Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - James Y Zou
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Song C, Qiao Z, Chen L, Ge J, Zhang R, Yuan S, Bian X, Wang C, Liu Q, Jia L, Fu R, Dou K. Identification of Key Genes as Early Warning Signals of Acute Myocardial Infarction Based on Weighted Gene Correlation Network Analysis and Dynamic Network Biomarker Algorithm. Front Immunol 2022; 13:879657. [PMID: 35795669 PMCID: PMC9251518 DOI: 10.3389/fimmu.2022.879657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The specific mechanisms and biomarkersunderlying the progression of stable coronary artery disease (CAD) to acute myocardial infarction (AMI) remain unclear. The current study aims to explore novel gene biomarkers associated with CAD progression by analyzing the transcriptomic sequencing data of peripheral blood monocytes in different stages of CAD. Material and Methods A total of 24 age- and sex- matched patients at different CAD stages who received coronary angiography were enrolled, which included 8 patients with normal coronary angiography, 8 patients with angiographic intermediate lesion, and 8 patients with AMI. The RNA from peripheral blood monocytes was extracted and transcriptome sequenced to analyze the gene expression and the differentially expressed genes (DEG). A Gene Oncology (GO) enrichment analysis was performed to analyze the biological function of genes. Weighted gene correlation network analysis (WGCNA) was performed to classify genes into several gene modules with similar expression profiles, and correlation analysis was carried out to explore the association of each gene module with a clinical trait. The dynamic network biomarker (DNB) algorithm was used to calculate the key genes that promote disease progression. Finally, the overlapping genes between different analytic methods were explored. Results WGCNA analysis identified a total of nine gene modules, of which two modules have the highest positive association with CAD stages. GO enrichment analysis indicated that the biological function of genes in these two gene modules was closely related to inflammatory response, which included T-cell activation, cell response to inflammatory stimuli, lymphocyte activation, cytokine production, and the apoptotic signaling pathway. DNB analysis identified a total of 103 genes that may play key roles in the progression of atherosclerosis plaque. The overlapping genes between DEG/WGCAN and DNB analysis identified the following 13 genes that may play key roles in the progression of atherosclerosis disease: SGPP2, DAZAP2, INSIG1, CD82, OLR1, ARL6IP1, LIMS1, CCL5, CDK7, HBP1, PLAU, SELENOS, and DNAJB6. Conclusions The current study identified a total of 13 genes that may play key roles in the progression of atherosclerotic plaque and provides new insights for early warning biomarkers and underlying mechanisms underlying the progression of CAD.
Collapse
Affiliation(s)
- Chenxi Song
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Zheng Qiao
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Xiaohui Bian
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Chunyue Wang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Qianqian Liu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Lei Jia
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Rui Fu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- *Correspondence: Rui Fu, ; Kefei Dou,
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- *Correspondence: Rui Fu, ; Kefei Dou,
| |
Collapse
|
5
|
Park SW, Seo MK, Webster MJ, Lee JG, Kim S. Differential expression of gene co-expression networks related to the mTOR signaling pathway in bipolar disorder. Transl Psychiatry 2022; 12:184. [PMID: 35508467 PMCID: PMC9067344 DOI: 10.1038/s41398-022-01944-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder (BPD) is a severe mental illness characterized by episodes of depression and mania. To investigate the molecular mechanisms underlying the pathophysiology of bipolar disorder, we performed transcriptome studies using RNA-seq data from the prefrontal cortex (PFC) of individuals with BPD and matched controls, as well as data from cell culture and animal model studies. We found 879 differentially expressed genes that were also replicated in an independent cohort of post-mortem samples. Genes involving the mechanistic target of rapamycine (mTOR) pathway were down-regulated, while genes interrelated with the mTOR pathway such as Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway were up-regulated. Gene co-expression network analyses identified a module related to the mTOR pathway that was up-regulated in BPD and also enriched for markers of endothelial cells. We also found a down-regulated co-expression module enriched for genes involved in mTOR signalling and in mTOR related pathways and enriched with neuronal markers. The mTOR related modules were also replicated in the independent cohort of samples. To investigate whether the expression of the modules related to mTOR signalling pathway could be differentially regulated in different cell types we performed comparative network analyses in experimental models. We found both up-regulated modules in the PFC significantly overlapped with an up-regulated module in the brain endothelial cells from mice treated with lipopolysaccharides (LPS) and mTOR related pathways such as JAK-STAT, PI3K-Akt and ribosome were enriched in the common genes. In addition, the down-regulated module in the PFC significantly overlapped with a down-regulated module from neurons treated with the mTOR inhibitor, Torin1 and mTOR signalling, autophagy, and synaptic vesicle cycles were significantly enriched in the common genes. These results suggest that co-expression networks related to mTOR signalling pathways may be up- or down-regulated in different cell types in the PFC of BPD. These results provide novel insights into the molecular mechanisms underlying the pathophysiology of BPD.
Collapse
Affiliation(s)
- Sung Woo Park
- grid.411612.10000 0004 0470 5112Department of Convergence Biomedical Science, College of Medicine, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392 Republic of Korea ,grid.411612.10000 0004 0470 5112Paik Institute for Clinical Research, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392 Republic of Korea
| | - Mi Kyoung Seo
- grid.411612.10000 0004 0470 5112Paik Institute for Clinical Research, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392 Republic of Korea
| | - Maree J. Webster
- grid.453353.70000 0004 0473 2858Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850 USA
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392, Republic of Korea. .,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, 875 Haeun-daero, Haeundae-gu, Busan, 47227, Republic of Korea.
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
6
|
Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Liu ZSJ, Kidnapillai S, Richardson M, Gray L, Smith CM, Dean OM, Kim JH, Berk M, Walder K. Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Front Pharmacol 2022; 13:873271. [PMID: 35462908 PMCID: PMC9024411 DOI: 10.3389/fphar.2022.873271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.
Collapse
Affiliation(s)
- Trang TT. Truong
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Briana Spolding
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Zoe SJ. Liu
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Srisaiyini Kidnapillai
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Mark Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Laura Gray
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Craig M. Smith
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Olivia M. Dean
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jee Hyun Kim
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
7
|
Dong H, Wang X. Identification of Signature Genes and Construction of an Artificial Neural Network Model of Prostate Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1562511. [PMID: 35432828 PMCID: PMC9010146 DOI: 10.1155/2022/1562511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to establish an artificial neural network (ANN) model based on prostate cancer signature genes (PCaSGs) to predict the patients with prostate cancer (PCa). In the present study, 270 differentially expressed genes (DEGs) were identified between PCa and normal prostate (NP) groups by differential gene expression analysis. Next, we performed Metascape gene annotation, pathway and process enrichment analysis, and PPI enrichment analysis on all 270 DEGs. Then, we identified and screened out 30 PCaSGs based on the random forest analysis and constructed an ANN model based on the gene score matrix consisting of 30 PCaSGs. Lastly, analysis of microarray dataset GSE46602 showed that the accuracy of this model for predicating PCa and NP samples was 88.9 and 78.6%, respectively. Our results suggested that the ANN model based on PCaSGs can be used for effectively predicting the patients with PCa and will be helpful for early PCa diagnosis and treatment.
Collapse
Affiliation(s)
- Hongye Dong
- Department of Kidney Disease and Blood Purifification Center, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xu Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
8
|
Rosolen RR, Aono AH, Almeida DA, Ferreira Filho JA, Horta MAC, De Souza AP. Network Analysis Reveals Different Cellulose Degradation Strategies Across Trichoderma harzianum Strains Associated With XYR1 and CRE1. Front Genet 2022; 13:807243. [PMID: 35281818 PMCID: PMC8912865 DOI: 10.3389/fgene.2022.807243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Trichoderma harzianum, whose gene expression is tightly controlled by the transcription factors (TFs) XYR1 and CRE1, is a potential candidate for hydrolytic enzyme production. Here, we performed a network analysis of T. harzianum IOC-3844 and T. harzianum CBMAI-0179 to explore how the regulation of these TFs varies between these strains. In addition, we explored the evolutionary relationships of XYR1 and CRE1 protein sequences among Trichoderma spp. The results of the T. harzianum strains were compared with those of Trichoderma atroviride CBMAI-0020, a mycoparasitic species. Although transcripts encoding carbohydrate-active enzymes (CAZymes), TFs, transporters, and proteins with unknown functions were coexpressed with cre1 or xyr1, other proteins indirectly related to cellulose degradation were identified. The enriched GO terms describing the transcripts of these groups differed across all strains, and several metabolic pathways with high similarity between both regulators but strain-specific differences were identified. In addition, the CRE1 and XYR1 subnetworks presented different topology profiles in each strain, likely indicating differences in the influences of these regulators according to the fungi. The hubs of the cre1 and xyr1 groups included transcripts not yet characterized or described as being related to cellulose degradation. The first-neighbor analyses confirmed the results of the profile of the coexpressed transcripts in cre1 and xyr1. The analyses of the shortest paths revealed that CAZymes upregulated under cellulose degradation conditions are most closely related to both regulators, and new targets between such signaling pathways were discovered. Although the evaluated T. harzianum strains are phylogenetically close and their amino acid sequences related to XYR1 and CRE1 are very similar, the set of transcripts related to xyr1 and cre1 differed, suggesting that each T. harzianum strain used a specific regulation strategy for cellulose degradation. More interestingly, our findings may suggest that XYR1 and CRE1 indirectly regulate genes encoding proteins related to cellulose degradation in the evaluated T. harzianum strains. An improved understanding of the basic biology of fungi during the cellulose degradation process can contribute to the use of their enzymes in several biotechnological applications and pave the way for further studies on the differences across strains of the same species.
Collapse
Affiliation(s)
- Rafaela Rossi Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Déborah Aires Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jaire Alves Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Anete Pereira De Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Anete Pereira De Souza,
| |
Collapse
|