1
|
Desarkar P, Vicario CM, Soltanlou M. Non-invasive brain stimulation in research and therapy. Sci Rep 2024; 14:29334. [PMID: 39592705 PMCID: PMC11599756 DOI: 10.1038/s41598-024-79039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Affiliation(s)
- Pushpal Desarkar
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, 1025 Queen Street West, Toronto, M6J1H1, Canada.
| | | | - Mojtaba Soltanlou
- Department of Psychology and Human Development, IOE, UCL's Faculty of Education and Society, University College London, London, UK
- Department of Childhood Education, Faculty of Education, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Anbarasi J, Kumari R, Ganesh M, Agrawal R. Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights. BMC Neurol 2024; 24:364. [PMID: 39342171 PMCID: PMC11438080 DOI: 10.1186/s12883-024-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale level through modalities such as functional and diffusion MRI. In parallel, the healthcare field has witnessed a surge in the application of machine learning and artificial intelligence for diagnostics, especially in imaging. While reviews covering machine learn ing and macroscale connectomics exist for specific disorders, none provide an overview that captures their evolving role, especially through the lens of clinical application and translation. The applications include understanding disorders, classification, identifying neuroimaging biomarkers, assessing severity, predicting outcomes and intervention response, identifying potential targets for brain stimulation, and evaluating the effects of stimulation intervention on the brain and connectome mapping in patients before neurosurgery. The covered studies span neurodegenerative, neurodevelopmental, neuropsychiatric, and neurological disorders. Along with applications, the review provides a brief of common ML methods to set context. Conjointly, limitations in ML studies within connectomics and strategies to mitigate them have been covered.
Collapse
Affiliation(s)
- Janova Anbarasi
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Radha Kumari
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Malvika Ganesh
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Rimjhim Agrawal
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India.
| |
Collapse
|
3
|
Xu X, Xu M, Su Y, Cao TV, Nikolin S, Moffa A, Loo C, Martin D. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Psychological Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci 2023; 13:1665. [PMID: 38137113 PMCID: PMC10741493 DOI: 10.3390/brainsci13121665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Psychological interventions are effective in alleviating neuropsychiatric symptoms, though results can vary between patients. Repetitive transcranial magnetic stimulation (rTMS) has been proven to improve clinical symptoms and cognition. It remains unclear whether rTMS can augment the efficacy of psychological interventions. (2) Methods: We examined the effects of rTMS combined with psychological interventions on clinical, functional, and cognitive outcomes from randomized controlled trials conducted in healthy and clinical populations. We searched PubMed, EMBASE, Cochrane Library, and PsycINFO databases up to April 2023. (3) Results: Twenty-seven studies were ultimately included. Compared to sham rTMS combined with psychological interventions, active rTMS combined with psychological interventions significantly improved overall clinical symptoms (k = 16, SMD = 0.31, CIs 0.08 to 0.54, p < 0.01). We found that 10 or more sessions of rTMS combined with cognitive behavioural therapy significantly improved clinical outcomes overall (k = 3, SMD = 0.21, CIs 0.05 to 0.36, Z = 2.49, p < 0.01). RTMS combined with cognitive training (CT) significantly improved cognition overall compared to sham rTMS combined with CT (k = 13, SMD = 0.28, CIs 0.15 to 0.42, p < 0.01), with a significant effect on global cognition (k = 11, SMD = 0.45, CIs 0.21 to 0.68, p < 0.01), but not on the other cognitive domains. (4) Conclusion: The current results provide preliminary support for the augmentation effects of active rTMS on clinical and cognitive outcomes across diverse populations. Future clinical trials are required to confirm these augmentation effects for specific psychological interventions in specific clinical populations.
Collapse
Affiliation(s)
- Xiaomin Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mei Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Yon Su
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thanh Vinh Cao
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Adriano Moffa
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Colleen Loo
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Donel Martin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| |
Collapse
|
4
|
Conelea C, Greene DJ, Alexander J, Houlihan K, Hodapp S, Wellen B, Francis S, Mueller B, Hendrickson T, Tseng A, Chen M, Fiecas M, Lim K, Opitz A, Jacob S. The CBIT + TMS trial: study protocol for a two-phase randomized controlled trial testing neuromodulation to augment behavior therapy for youth with chronic tics. Trials 2023; 24:439. [PMID: 37400828 PMCID: PMC10316640 DOI: 10.1186/s13063-023-07455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Comprehensive Behavioral Intervention for Tics (CBIT) is a first-line treatment for tic disorders that aims to improve controllability over tics that an individual finds distressing or impairing. However, it is only effective for approximately half of patients. Supplementary motor area (SMA)-directed neurocircuitry plays a strong role in motor inhibition, and activity in this region is thought to contribute to tic expression. Targeted modulation of SMA using transcranial magnetic stimulation (TMS) may increase CBIT efficacy by improving patients' ability to implement tic controllability behaviors. METHODS The CBIT + TMS trial is a two-phase, milestone-driven early-stage randomized controlled trial. The trial will test whether augmenting CBIT with inhibitory, non-invasive stimulation of SMA with TMS modifies activity in SMA-mediated circuits and enhances tic controllability in youth ages 12-21 years with chronic tics. Phase 1 will directly compare two rTMS augmentation strategies (1 Hz rTMS vs. cTBS) vs. sham in N = 60 participants. Quantifiable, a priori "Go/No Go Criteria" guide the decision to proceed to phase 2 and the selection of the optimal TMS regimen. Phase 2 will compare the optimal regimen vs. sham and test the link between neural target engagement and clinical outcomes in a new sample of N = 60 participants. DISCUSSION This clinical trial is one of few to date testing TMS augmentation of therapy in a pediatric sample. The results will provide insight into whether TMS is a potentially viable strategy for enhancing CBIT efficacy and reveal potential neural and behavioral mechanisms of change. TRIAL REGISTRATION ClinicalTrials.gov NCT04578912 . Registered on October 8, 2020.
Collapse
Affiliation(s)
- Christine Conelea
- Department of Psychiatry and Behavioral Sciences, Masonic Institute for the Developing Brain, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN, 55414, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, San Diego, USA
| | - Jennifer Alexander
- Department of Psychiatry and Behavioral Sciences, Masonic Institute for the Developing Brain, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Kerry Houlihan
- Department of Psychiatry and Behavioral Sciences, Masonic Institute for the Developing Brain, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Sarah Hodapp
- Department of Psychiatry and Behavioral Sciences, Masonic Institute for the Developing Brain, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Brianna Wellen
- Department of Psychiatry and Behavioral Sciences, Masonic Institute for the Developing Brain, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Sunday Francis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
| | - Tim Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota Informatics Institute, Minneapolis, USA
| | - Angela Tseng
- Department of Psychiatry and Behavioral Sciences, Masonic Institute for the Developing Brain, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Mo Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
- Non-Invasive Neuromodulation Lab, Brain Conditions, MnDRIVE Initiative, University of Minnesota, Minneapolis, USA
- Neuroscience Program, Research Department, Gillette Children's Specialty Healthcare, Saint Paul, USA
| | - Mark Fiecas
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Kelvin Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
| |
Collapse
|
5
|
Baratta MV, Seligman MEP, Maier SF. From helplessness to controllability: toward a neuroscience of resilience. Front Psychiatry 2023; 14:1170417. [PMID: 37229393 PMCID: PMC10205144 DOI: 10.3389/fpsyt.2023.1170417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
"Learned helplessness" refers to debilitating outcomes, such as passivity and increased fear, that follow an uncontrollable adverse event, but do not when that event is controllable. The original explanation argued that when events are uncontrollable the animal learns that outcomes are independent of its behavior, and that this is the active ingredient in producing the effects. Controllable adverse events, in contrast, fail to produce these outcomes because they lack the active uncontrollability element. Recent work on the neural basis of helplessness, however, takes the opposite view. Prolonged exposure to aversive stimulation per se produces the debilitation by potent activation of serotonergic neurons in the brainstem dorsal raphe nucleus. Debilitation is prevented with an instrumental controlling response, which activates prefrontal circuitry detecting control and subsequently blunting the dorsal raphe nucleus response. Furthermore, learning control alters the prefrontal response to future adverse events, thereby preventing debilitation and producing long-term resiliency. The general implications of these neuroscience findings may apply to psychological therapy and prevention, in particular by suggesting the importance of cognitions and control, rather than habits of control.
Collapse
Affiliation(s)
- Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Martin E. P. Seligman
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven F. Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
6
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
7
|
Perrotta D, Perri RL. Mini-review: When neurostimulation joins cognitive-behavioral therapy. On the need of combining evidence-based treatments for addiction disorders. Neurosci Lett 2022; 777:136588. [PMID: 35341891 DOI: 10.1016/j.neulet.2022.136588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Substance and behavioral addiction is a global health problem related to cognitive functioning and emotional responses like top-down control and craving. The present review discusses the role of non-invasive brain stimulation (NIBS) and cognitive-behavioral therapy (CBT) as evidence-based treatments for addiction disorders. The discussion spans between several evidence for both therapies, also considering the difference and heterogeneity among clinical protocols. Nowadays, literature is consistent in indicating the neurostimulation of the prefrontal cortex as effective for different kinds of addiction, corroborating the evidence that they rely on a common network in the brain. Likewise, within the CBT studies it is possible to observe a wide range of interventions that are overall effective in regulating the executive functions associated with addiction disorders. Nevertheless, the integration of NIBS and CBT in addictions has been scarcely considered in literature so far. For this reason, the present article is meant to foster empirical research in this field by highlighting the findings supporting these evidence-based interventions, both as stand-alone and integrated treatments. To this aim, psychological and neurophysiological mechanisms of NIBS and CBT in addictions are reviewed, and the rationale of their integration discussed. In particular, as evidence suggest these treatments affect top-down and bottom-up processes in different ways, with NIBS reducing craving and CBT boosting motivation and coping, we suggest their combination might better target the different components of addiction to promote abstinence.
Collapse
|