1
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2025; 30:659-678. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry 2025; 30:296-309. [PMID: 39227433 DOI: 10.1038/s41380-024-02735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antipsychotic medications are essential when treating schizophrenia spectrum and other psychotic disorders, but the efficacy and tolerability of these medications vary from person to person. This interindividual variation is likely mediated, at least in part, by epigenomic processes that have yet to be fully elucidated. Herein, we systematically identified and evaluated 65 studies that examine the influence of antipsychotic drugs on epigenomic changes, including global methylation (9 studies), genome-wide methylation (22 studies), candidate gene methylation (16 studies), and histone modification (18 studies). Our evaluation revealed that haloperidol was consistently associated with increased global hypermethylation, which corroborates with genome-wide analyses, mostly performed by methylation arrays. In contrast, clozapine seems to promote hypomethylation across the epigenome. Candidate-gene methylation studies reveal varying effects post-antipsychotic therapy. Some genes like Glra1 and Drd2 are frequently found to undergo hypermethylation, whereas other genes such as SLC6A4, DUSP6, and DTNBP1 are more likely to exhibit hypomethylation in promoter regions. In examining histone modifications, the literature suggests that clozapine changes histone methylation patterns in the prefrontal cortex, particularly elevating H3K4me3 at the Gad1 gene and affecting the transcription of genes like mGlu2 by modifying histone acetylation and interacting with HDAC2 enzymes. Risperidone and quetiapine, however, exhibit distinct impacts on histone marks across different brain regions and cell types, with risperidone reducing H3K27ac in the striatum and quetiapine modifying global H3K9me2 levels in the prefrontal cortex, suggesting antipsychotics demonstrate selective influence on histone modifications, which demonstrates a complex and targeted mode of action. While this review summarizes current knowledge, the intricate dynamics between antipsychotics and epigenetics clearly warrant more exhaustive exploration with the potential to redefine our understanding and treatment of psychiatric conditions. By deciphering the epigenetic changes associated with drug treatment and therapeutic outcomes, we can move closer to personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Diogo Marques
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nazanin Vaziri
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad Bousman
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Ni P, Zhou C, Liang S, Jiang Y, Liu D, Shao Z, Noh H, Zhao L, Tian Y, Zhang C, Wei J, Li X, Yu H, Ni R, Yu X, Qi X, Zhang Y, Ma X, Deng W, Guo W, Wang Q, Sham PC, Chung S, Li T. YBX1-Mediated DNA Methylation-Dependent SHANK3 Expression in PBMCs and Developing Cortical Interneurons in Schizophrenia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300455. [PMID: 37211699 PMCID: PMC10369273 DOI: 10.1002/advs.202300455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Indexed: 05/23/2023]
Abstract
Schizophrenia (SCZ) is a severe psychiatric and neurodevelopmental disorder. The pathological process of SCZ starts early during development, way before the first onset of psychotic symptoms. DNA methylation plays an important role in regulating gene expression and dysregulated DNA methylation is involved in the pathogenesis of various diseases. The methylated DNA immunoprecipitation-chip (MeDIP-chip) is performed to investigate genome-wide DNA methylation dysregulation in peripheral blood mononuclear cells (PBMCs) of patients with first-episode SCZ (FES). Results show that the SHANK3 promoter is hypermethylated, and this hypermethylation (HyperM) is negatively correlated with the cortical surface area in the left inferior temporal cortex and positively correlated with the negative symptom subscores in FES. The transcription factor YBX1 is further found to bind to the HyperM region of SHANK3 promoter in induced pluripotent stem cells (iPSCs)-derived cortical interneurons (cINs) but not glutamatergic neurons. Furthermore, a direct and positive regulatory effect of YBX1 on the expression of SHANK3 is confirmed in cINs using shRNAs. In summary, the dysregulated SHANK3 expression in cINs suggests the potential role of DNA methylation in the neuropathological mechanism underlying SCZ. The results also suggest that HyperM of SHANK3 in PBMCs can serve as a potential peripheral biomarker of SCZ.
Collapse
Affiliation(s)
- Peiyan Ni
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Chuqing Zhou
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Sugai Liang
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youhui Jiang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Dongxin Liu
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Zhicheng Shao
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
| | - Haneul Noh
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Liansheng Zhao
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yang Tian
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Chengcheng Zhang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jinxue Wei
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaojing Li
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Hua Yu
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Rongjun Ni
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xueli Yu
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xueyu Qi
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Yamin Zhang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaohong Ma
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Wei Deng
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Wanjun Guo
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Qiang Wang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Pak C. Sham
- Department of PsychiatryLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong, SAR999077China
- Centre for PanorOmic SciencesThe University of Hong KongHong Kong, SAR999077China
| | - Sangmi Chung
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Tao Li
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
5
|
Wawrzczak-Bargieła A, Bilecki W, Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy. Brain Sci 2023; 13:brainsci13030426. [PMID: 36979236 PMCID: PMC10046502 DOI: 10.3390/brainsci13030426] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia.
Collapse
|
6
|
Castiglioni S, Di Fede E, Bernardelli C, Lettieri A, Parodi C, Grazioli P, Colombo EA, Ancona S, Milani D, Ottaviano E, Borghi E, Massa V, Ghelma F, Vignoli A, Lesma E, Gervasini C. KMT2A: Umbrella Gene for Multiple Diseases. Genes (Basel) 2022; 13:genes13030514. [PMID: 35328068 PMCID: PMC8949091 DOI: 10.3390/genes13030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A (Lysine methyltransferase 2A) is a member of the epigenetic machinery, encoding a lysine methyltransferase responsible for the transcriptional activation through lysine 4 of histone 3 (H3K4) methylation. KMT2A has a crucial role in gene expression, thus it is associated to pathological conditions when found mutated. KMT2A germinal mutations are associated to Wiedemann–Steiner syndrome and also in patients with initial clinical diagnosis of several other chromatinopathies (i.e., Coffin–Siris syndromes, Kabuki syndrome, Cornelia De Lange syndrome, Rubinstein–Taybi syndrome), sharing an overlapping phenotype. On the other hand, KMT2A somatic mutations have been reported in several tumors, mainly blood malignancies. Due to its evolutionary conservation, the role of KMT2A in embryonic development, hematopoiesis and neurodevelopment has been explored in different animal models, and in recent decades, epigenetic treatments for disorders linked to KMT2A dysfunction have been extensively investigated. To note, pharmaceutical compounds acting on tumors characterized by KMT2A mutations have been formulated, and even nutritional interventions for chromatinopathies have become the object of study due to the role of microbiota in epigenetic regulation.
Collapse
Affiliation(s)
- Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Clara Bernardelli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- Child NeuroPsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Elena Lesma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-0250-3230-28
| |
Collapse
|