1
|
Han W, Wu X, Wang L, Qu C, Dou L, Fang Y, Sun P. Altered brain function in treatment-resistant depression patients: A resting-state functional magnetic resonance imaging study. Neurosci Lett 2024; 842:138004. [PMID: 39341331 DOI: 10.1016/j.neulet.2024.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND It has been established that there are functional changes in the brain of treatment-resistant depression (TRD) patients, but previous studies of functional connectivity (FC) usually involved selection of regions of interest based on accumulated a priori knowledge of the disorder. In this study, we combine amplitude of low-frequency fluctuation (ALFF) and FC; this approach, based on the abnormal ALFF, may provide some insights into the neural basis of the disease in terms of fMRI signals of low-frequency fluctuations. METHODS A total of 16 TRD patients, who visited the Qingdao Mental Health Center, Shandong Province, China between March 2023 and January 2024, along with 16 normal subjects, were enrolled into this study for functional imaging. In this study, we first explored the ALFF changes of TRD patients at a baseline resting state. Second, we selected the regions that were significantly changed in the ALFF as seeds and calculated the regional activity and functional connectivity (FC) of these regions using a seed-based approach. We also calculated correlations between the percent change in the PDQ-5D scores and ALFF values in brain regions with differing activity for TRD patients. RESULTS During the baseline resting state, by using the ALFF, we found a significantly decreased or increased ALFF in the TRD patients relative to the controls. These regions were located in the left/right postcentral gyrus (PoCG.L/PoCG.R), right cuneus(CUN.R). We found that the ALFF values of the right hippocampus (HIP.R) in the TRD group were negatively correlated with the PDQ-5D score. Then, we selected these brain regions as seeds to investigate the FC changes in brains of TRD patients. We found abnormal functional connectivity in left/right middle frontal gyrus(MFG.L/MFG.R), the right Inferior frontal gyrus, opercular part (IFGoperc.R), the left/right Anterior cingulate and paracingulate gyri (ACC.L/ACC.R), the right supramarginal gyrus (SMG.R), and the right Calcarine fissure and surrounding cortex (CAL.R). CONCLUSION We found a larger range of altered brain regions in TRD patients compared to healthy controls, especially in the central executive network (CEN), salience network (SN) and default mode network (DMN).
Collapse
Affiliation(s)
- Weijian Han
- Qingdao University Medical College, Qingdao 266000, China; Qingdao Mental Health Center, Qingdao 266034, China
| | - Xiaohui Wu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ligang Wang
- Qingdao Mental Health Center, Qingdao 266034, China
| | - Chunhui Qu
- Qingdao Mental Health Center, Qingdao 266034, China
| | - Liqiang Dou
- Qingdao Pingdu Mental Health Center, Qingdao 266700, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Neuroscience, Shanghai Institute for Biological Sciences, CAS, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao 266034, China.
| |
Collapse
|
2
|
Nan X, Li W, Wang L. Functional magnetic resonance imaging studies in bipolar disorder in resting state: A coordinates-based meta-analysis. Psychiatry Res Neuroimaging 2024; 344:111869. [PMID: 39146823 DOI: 10.1016/j.pscychresns.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Exploring changes in the intrinsic activity of the brain in people with bipolar disorder (BD) is necessary. However, the findings have not yet led to consistent conclusions. In this regard, this paper aims to extract more obvious differential brain areas and neuroimaging markers, for the purpose of providing assistance for early clinical diagnosis and subsequent treatment. We conducted a meta-analysis of whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) studies using seed-based d-mapping software that examined differences in amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) between patients with BD and healthy controls (HCs). Seed-based d-Mapping (formerly Signed Differential Mapping) with Permutation of Subject Images, or SDM-PSI, is a statistical technique for meta-analyzing studies of differences in brain activity or structure. A total of 16 articles involving 1112 individuals were included in this study for meta-analysis. This paper confidently analyzes the correlation between the clinical scales HAMD, HAMA, and YMRS, and the area of difference. We found significant changes that increased activation in the anterior connective and left lens nucleus, the nucleus of the shell, and BA 48 in BD patients compared with HC (P < 0.05, uncorrected), as well as a significant correlation between HAMD and the left superior frontal gyrus (after FWE correction P < 0.05). Therefore, basal ganglia and frontal cortex may have important significance in the pathogenesis and pathological basis of BD, making it an important issue to be attached importance to.
Collapse
Affiliation(s)
- Xia Nan
- Baiyin City Central Hospital, Baiyin, China
| | - Wenling Li
- The NO.2 People's Hospital of Lanzhou, Lanzhou, China
| | - Lin Wang
- Department of Radiology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China; Cancer Clinical Medical Research Center, Gansu combination of traditional Chinese and Western medicine, Lanzhou, China.
| |
Collapse
|
3
|
Merola GP, Tarchi L, Saccaro LF, Delavari F, Piguet C, Van De Ville D, Castellini G, Ricca V. Transdiagnostic markers across the psychosis continuum: a systematic review and meta-analysis of resting state fMRI studies. Front Psychiatry 2024; 15:1378439. [PMID: 38895037 PMCID: PMC11184053 DOI: 10.3389/fpsyt.2024.1378439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Psychotic symptoms are among the most debilitating and challenging presentations of severe psychiatric diseases, such as schizophrenia, schizoaffective, and bipolar disorder. A pathophysiological understanding of intrinsic brain activity underlying psychosis is crucial to improve diagnosis and treatment. While a potential continuum along the psychotic spectrum has been recently described in neuroimaging studies, especially for what concerns absolute and relative amplitude of low-frequency fluctuations (ALFF and fALFF), these efforts have given heterogeneous results. A transdiagnostic meta-analysis of ALFF/fALFF in patients with psychosis compared to healthy controls is currently lacking. Therefore, in this pre-registered systematic review and meta-analysis PubMed, Scopus, and Embase were searched for articles comparing ALFF/fALFF between psychotic patients and healthy controls. A quantitative synthesis of differences in (f)ALFF between patients along the psychotic spectrum and healthy controls was performed with Seed-based d Mapping, adjusting for age, sex, duration of illness, clinical severity. All results were corrected for multiple comparisons by Family-Wise Error rates. While lower ALFF and fALFF were detected in patients with psychosis in comparison to controls, no specific finding survived correction for multiple comparisons. Lack of this correction might explain the discordant findings highlighted in previous literature. Other potential explanations include methodological issues, such as the lack of standardization in pre-processing or analytical procedures among studies. Future research on ALFF/fALFF differences for patients with psychosis should prioritize the replicability of individual studies. Systematic review registration https://osf.io/, identifier (ycqpz).
Collapse
Affiliation(s)
| | - Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Farnaz Delavari
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
- General Pediatric Division, Geneva University Hospital, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Zhang L, Ding Y, Li T, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Similar imaging changes and their relations to genetic profiles in bipolar disorder across different clinical stages. Psychiatry Res 2024; 335:115868. [PMID: 38554494 DOI: 10.1016/j.psychres.2024.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Chen Z, Zhang Z, Li F, Zhao L, Bo Q, Zhou Y, Wang C. Decreased dynamic variability of the cerebellum in the euthymic patients with bipolar disorder. BMC Psychiatry 2024; 24:137. [PMID: 38373944 PMCID: PMC10877821 DOI: 10.1186/s12888-024-05596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a complex mental illness characterized by different mood states, including depression, mania/hypomania, and euthymia. This study aimed to comprehensively evaluate dynamic changes in intrinsic brain activity by using dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic degree centrality (dDC) in patients with BD euthymia or depression and healthy individuals. METHODS The resting-state functional magnetic resonance imaging data were analyzed from 37 euthymic and 28 depressed patients with BD, as well as 85 healthy individuals. Using the sliding-window method, the dfALFF and dDC were calculated for each participant. These values were compared between the 3 groups using one-way analysis of variance (ANOVA). Additional analyses were conducted using different window lengths, step width, and window type to ensure the reliability of the results. RESULTS The euthymic group showed significantly lower dfALFF and dDC values of the left and right cerebellum posterior lobe compared with the depressed and control groups (cluster level PFWE < 0.05), while the latter two groups were comparable. Brain regions showing significant group differences in the dfALFF analysis overlapped with those with significant differences in the dDC analysis. These results were consistent across different window lengths, step width, and window type. CONCLUSIONS These findings suggested that patients with euthymic BD exhibit less flexibility of temporal functional activities in the cerebellum posterior lobes compared to either depressed patients or healthy individuals. These results could contribute to the development of neuropathological models of BD, ultimately leading to improved diagnosis and treatment of this complex illness.
Collapse
Affiliation(s)
- Zhenzhu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China.
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China.
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China.
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China
| |
Collapse
|
6
|
Huang S, Wen X, Liu Z, Li C, He Y, Liang J, Huang W. Distinguishing functional and structural MRI abnormalities between bipolar and unipolar depression. Front Psychiatry 2023; 14:1343195. [PMID: 38169701 PMCID: PMC10758430 DOI: 10.3389/fpsyt.2023.1343195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background This study aims to investigate the underlying characteristics of spontaneous brain activity by analyzing the volumes of the hippocampus and parahippocampal gyrus, as well as the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo), in order to differentiate between bipolar disorder (BD) and unipolar depressive disorder. Methods A total of 46 healthy controls, 58 patients with major depressive disorder (MDD), and 61 patients with BD participated in the study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. The researchers calculated the differences in volume, fALFF, and ReHo values among the three groups. Additionally, they conducted correlation analyses to examine the relationships between clinical variables and the aforementioned brain measures. Results The results showed that the BD group exhibited increased fALFF in the hippocampus compared to the healthy control (HC) and MDD groups. Furthermore, the ReHo values in the hippocampus and parahippocampal gyrus were significantly higher in the BD group compared to the HC group. The findings from the person correlation analysis indicated a positive relationship between ReHo values in the hippocampus and both HAMD and HAMA scores. Moreover, there was no correlation between the volumes, fALFF, and ReHo values in the hippocampus and parahippocampal gyrus, and cognitive function levels (RBANS). Conclusion Taken together, these aberrant patterns of intrinsic brain activity in the hippocampus and parahippocampal gyrus may serve as quantitative indicators for distinguishing between BD and unipolar depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wei Huang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
7
|
Gao Y, Guo X, Zhong Y, Liu X, Tian S, Deng J, Lin X, Bao Y, Lu L, Wang G. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder. J Affect Disord 2023; 332:136-142. [PMID: 36990286 DOI: 10.1016/j.jad.2023.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Gaining insight into abnormal functional brain network homogeneity (NH) has the potential to aid efforts to target or otherwise study major depressive disorder (MDD). The NH of the dorsal attention network (DAN) in first-episode treatment-naive MDD patients, however, has yet to be studied. As such, the present study was developed to explore the NH of the DAN in order to determine the ability of this parameter to differentiate between MDD patients and healthy control (HC) individuals. METHODS This study included 73 patients with first-episode treatment-naive MDD and 73 age-, gender-, and educational level-matched healthy controls. All participants completed the attentional network test (ANT), Hamilton Rating Scale for Depression (HRSD), and resting-state functional magnetic resonance imaging (rs-fMRI) analyses. A group independent component analysis (ICA) was used to identify the DAN and to compute the NH of the DAN in patients with MDD. Spearman's rank correlation analyses were used to explore relationships between significant NH abnormalities in MDD patients, clinical parameters, and executive control reaction time. RESULTS Relative to HCs, patients exhibited reduced NH in the left supramarginal gyrus (SMG). Support vector machine (SVM) analyses and receiver operating characteristic curves indicated that the NH of the left SMG could be used to differentiate between HCs and MDD patients with respective accuracy, specificity, sensitivity, and AUC values of 92.47 %, 91.78 %, 93.15 %, and 65.39 %. A significant positive correlation was observed between the left SMG NH values and HRSD scores among MDD patients. CONCLUSIONS These results suggest that NH changes in the DAN may offer value as a neuroimaging biomarker capable of differentiating between MDD patients and healthy individuals.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiaoxin Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Shanshan Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Yanpin Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| | - Lin Lu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
8
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Chen H, Wang L, Li H, Song H, Zhang X, Wang D. Altered intrinsic brain activity and cognitive impairment in euthymic, unmedicated individuals with bipolar disorder. Asian J Psychiatr 2023; 80:103386. [PMID: 36495730 DOI: 10.1016/j.ajp.2022.103386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment in euthymic bipolar disorder (BD) contributes to poor functional outcomes. Resting-state magnetic resonance imaging (MRI)may help us understand the neurobiology of cognitive impairment in BD. Here, forty unmedicated euthymic BD patients and thirty-nine healthy controls were recruited, undergoing MRI scans and neuropsychological measures. The amplitude of low-frequency fluctuation (ALFF) and ALFF-based functional connectivity (FC) analysis was employed to explore the potential alterations of neural activity. Voxel-wised correlation was calculated between clinical and cognitive variables and abnormal brain activity. Compared with healthy controls, euthymic BD patients showed worse cognitive performance in Trail Making Test, Digit Span Test, and Stroop Color-Word Test (SCWT). The euthymic BD group had significantly lower ALFF in the left medial frontal gyrus, right middle frontal gyrus, right postcentral gyrus, and left superior frontal gyrus. Furthermore, we found decreased ALFF values in the right middle frontal gyrus that was negatively correlated with cognitive inhibition, (r = -0.43, P = 0.015). ALFF-based FC analysis showed that BD group showed significantly decreased FC between the right middle frontal gyrus (seed) and left middle temporal gyrus and left medial frontal gyrus, (Two-tailed, PFWE < 0.05, TFCE corrected). The findings demonstrated that individuals with BD during the euthymic phase exhibited decreased ALFF and hypoconnectivity of key brain areas within the frontoparietal network. These altered spontaneous brain activity in euthymic BD patients may be involved in the pathophysiology mechanism of cognitive deficits.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Longxi Wang
- Department of laboratory, Rongfu Military Hospital of Jining city, Jining, China
| | - Hong Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Song
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Chen Q, Bi Y, Zhao X, Lai Y, Yan W, Xie L, Gao T, Xie S, Zeng T, Li J, Kuang S, Gao L, Lv Z. Regional amplitude abnormities in the major depressive disorder: A resting-state fMRI study and support vector machine analysis. J Affect Disord 2022; 308:1-9. [PMID: 35398104 DOI: 10.1016/j.jad.2022.03.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Major depressive disorder (MDD) is a common mood disorder. However, it still remains challenging to select sensitive biomarkers and establish reliable diagnosis methods currently. This study aimed to investigate the abnormalities of the spontaneous brain activity in the MDD and explore the clinical diagnostic value of three amplitude metrics in altered regions by applying the support vector machine (SVM) method. METHODS A total of fifty-two HCs and forty-eight MDD patients were recruited in the study. The amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF) and percent amplitude of fluctuation (PerAF) metrics were calculated to assess local spontaneous brain activity. Then we performed correlation analysis to examine the association between cerebral abnormalities and clinical characteristics. Finally, SVM analysis was applied to conduct the classification model for evaluating the diagnostic value. RESULTS Two-sample t-test exhibited that MDD patients had increased ALFF value in the right caudate and corpus callosum, increased fALFF value in the same regions and increased PerAF value in the inferior parietal lobule and right caudate compared to HCs. Moreover, PerAF value in the inferior parietal lobule was negatively correlated with the slow factor scores. The SVM results showed that a combination of mean ALFF and fALFF in the right caudate and corpus callosum selected as features achieved a highest area under curve (AUC) value (0.89), accuracy (79.79%), sensitivity (65.12%) and specificity (92.16%). CONCLUSION Collectively, we found increased mean ALFF and fALFF may serve as a potential neuroimaging marker to discriminate MDD and HCs.
Collapse
Affiliation(s)
- Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanmeng Bi
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Xiaohua Zhao
- School of Beauty, Yichun University, Yichun, China
| | - Yuqi Lai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingpeng Xie
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Gao
- Department of General medicine, The first affiliated hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Xu YL, Wang XY, Chen J, Kang M, Wang YX, Zhang LJ, Shu HY, Liao XL, Zou J, Wei H, Ling Q, Shao Y. Altered Spontaneous Brain Activity Patterns of Meibomian Gland Dysfunction in Severely Obese Population Measured Using the Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2022; 13:914039. [PMID: 35633781 PMCID: PMC9130486 DOI: 10.3389/fpsyt.2022.914039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Utilizing the fractional amplitude of low-frequency fluctuations (fALFF) technique, this study sought to correlate spontaneous cerebral abnormalities with the clinical manifestations of meibomian gland dysfunction (MGD) in severely obese (SO) population. SUBJECTS AND METHODS Twelve MGD patients in SO population (PATs) (4 males and 8 females) and twelve healthy controls (HCs) (6 males and 6 females) matched by gender and age were enrolled. Every participant underwent resting-state functional magnetic resonance imaging (rs-MRI) scanning. Spontaneous cerebral activity alterations were examined using the fALFF method. Receiver operating characteristic (ROC) curves were utilized to classify the medial fALFF values of the PATs and HCs. PATs were also asked to complete anxiety and depression score forms, permitting a correlation analysis. RESULTS In contrast with HCs, PATs had prominently increased fALFF values in the left lingual gyrus, the right globus pallidus, the right anterior cingulate and paracingulate gyri and the left middle occipital lobe (P < 0.05), and decreased fALFF values in the right cerebellum, the left fusiform gyrus, the right medial orbitofrontal gyrus, the left triangle inferior frontal gyrus and the left inferior parietal gyrus (P < 0.05). The results of the ROC curve indicated that changes in regional fALFF values might help diagnose MGD in SO population. Moreover, fALFF values in the right cerebellum of PATs were positively correlated with hospital anxiety and depression scores (HADS) (r = 0.723, P = 0.008). The fALFF values in the left triangle inferior frontal gyrus of PAT were negatively correlated with HADS (r = -0.651, P = 0.022). CONCLUSIONS Aberrant spontaneous activity was observed in multiple regions of the cerebrum, offering helpful information about the pathology of MGD in SO population. Aberrant fALFF values in these regions likely relates to the latent pathologic mechanisms of anomalous cerebral activities in PATs.
Collapse
Affiliation(s)
- Yu-Ling Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Xin Wang
- Department of Ophthalmology and Visual Sciences, Cardiff University, Cardiff, United Kingdom
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Wu J, Wu J, Guo R, Chu L, Li J, Zhang S, Ren H. The decreased connectivity in middle temporal gyrus can be used as a potential neuroimaging biomarker for left temporal lobe epilepsy. Front Psychiatry 2022; 13:972939. [PMID: 36032260 PMCID: PMC9399621 DOI: 10.3389/fpsyt.2022.972939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE We aimed to explore voxel-mirrored homotopic connectivity (VMHC) abnormalities between the two brain hemispheres in left temporal lobe epilepsy (lTLE) patients and to determine whether these alterations could be leveraged to guide lTLE diagnosis. MATERIALS AND METHODS Fifty-eight lTLE patients and sixty healthy controls (HCs) matched in age, sex, and education level were recruited to receive resting state functional magnetic resonance imaging (rs-fMRI) scan. Then VHMC analyses of bilateral brain regions were conducted based on the results of these rs-fMRI scans. The resultant imaging data were further analyzed using support vector machine (SVM) methods. RESULTS Compared to HCs, patients with lTLE exhibited decreased VMHC values in the bilateral middle temporal gyrus (MTG) and middle cingulum gyrus (MCG), while no brain regions in these patients exhibited increased VMHC values. SVM analyses revealed the diagnostic accuracy of reduced bilateral MTG VMHC values to be 75.42% (89/118) when differentiating between lTLE patients and HCs, with respective sensitivity and specificity values of 74.14% (43/58) and 76.67% (46/60). CONCLUSION Patients with lTLE exhibit abnormal VMHC values corresponding to the impairment of functional coordination between homotopic regions of the brain. These altered MTG VMHC values may also offer value as a robust neuroimaging biomarker that can guide lTLE patient diagnosis.
Collapse
Affiliation(s)
- Jinlong Wu
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruimin Guo
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Linkang Chu
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|