1
|
Sarker DK, Ray P, Salam FBA, Uddin SJ. Exploring the impact of deleterious missense nonsynonymous single nucleotide polymorphisms in the DRD4 gene using computational approaches. Sci Rep 2025; 15:3150. [PMID: 39856236 PMCID: PMC11761060 DOI: 10.1038/s41598-025-86916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Dopamine receptor D4 (DRD4) plays a vital role in regulating various physiological functions, including attention, impulse control, and sleep, as well as being associated with various neurological diseases, including attention deficit hyperactivity disorder, novelty seeking, and so on. However, a comprehensive analysis of harmful nonsynonymous single nucleotide polymorphisms (nsSNPs) of the DRD4 gene and their effects remains unexplored. The aim of this study is to uncover novel damaging missense nsSNPs and their structural and functional effects on the DRD4 receptor. From the dbSNP database, we found 677 nsSNPs, and then we analyzed their functional consequences, disease associations, and effects on protein stability with fifteen in silico tools. Five variants, including L65ICL1P (rs1459150721), V1163.33D (rs761875546), I1293.46S (rs751467198), I1564.46T (rs757732258), and F2015.47S (rs199609858), were identified as the most deleterious mutations that were also present in the conserved region and showed lower interactions with neighboring residues. To comprehensively understand their impact, we docked agonist dopamine and antagonist nemonapride at the binding site of the receptor, followed by 200 ns molecular dynamics simulations. We identified the V116D and I129S mutations as the most damaging, followed by F201S in the dopamine-bound states. Both the V116D and I129S variants demonstrated significantly high RMSD, Rg, and SASA, and low thermodynamic stability. The F201S-dopamine complex exhibited lower compactness and higher motions, along with a significant loss of hydrogen bonds and active site interactions. By contrast, while interacting with nemonapride, the impact of the I156T and L65P mutations was highly deleterious; both showed lower stability, higher flexibility, and higher motions. Additionally, nemonapride significantly lost interactions with the active site, notably in the I156T variant. We also found the V116D-nemonapride complex as structurally damaging; however, the interaction patterns of nemonapride were less altered in the MMPBSA analysis. Overall, this study revealed five novel deleterious variants along with a comprehensive understanding of their effect in the presence of an agonist and antagonist, which could be helpful for understanding disease susceptibility, precision medicine, and developing potential drugs.
Collapse
Affiliation(s)
- Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science & Technology, Dhaka, 1230, Bangladesh
| | - Pallobi Ray
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Fayad Bin Abdus Salam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
2
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|