1
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
2
|
Jaramillo-Jimenez A, Tovar-Rios DA, Mantilla-Ramos YJ, Ochoa-Gomez JF, Bonanni L, Brønnick K. ComBat models for harmonization of resting-state EEG features in multisite studies. Clin Neurophysiol 2024; 167:241-253. [PMID: 39369552 DOI: 10.1016/j.clinph.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults. METHODS RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects. RESULTS Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features' dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size. CONCLUSIONS ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features. SIGNIFICANCE This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.
Collapse
Affiliation(s)
- Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Faculty of Health Sciences, University of Stavanger, Stavanger, Norway; Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia; Grupo Neuropsicología y Conducta, Universidad de Antioquia. Medellín, Colombia; Semillero de Investigación NeuroCo, Universidad de Antioquia, Medellín, Colombia.
| | - Diego A Tovar-Rios
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Doctoral School Biomedical Sciences, KU Leuven, Leuven, Belgium; Grupo de Investigación en Estadística Aplicada - INFERIR, Universidad del Valle, Cali, Colombia; Prevención y Control de la Enfermedad Crónica - PRECEC, Universidad del Valle, Colombia.
| | - Yorguin-Jose Mantilla-Ramos
- Grupo Neuropsicología y Conducta, Universidad de Antioquia. Medellín, Colombia; Semillero de Investigación NeuroCo, Universidad de Antioquia, Medellín, Colombia; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, Montreal, Canada.
| | - John-Fredy Ochoa-Gomez
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia; Grupo Neuropsicología y Conducta, Universidad de Antioquia. Medellín, Colombia.
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, G. d'Annunzio University, Chieti, Italy.
| | - Kolbjørn Brønnick
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Faculty of Social Sciences, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
3
|
Wider W, Mutang JA, Chua BS, Pang NTP, Jiang L, Fauzi MA, Udang LN. Mapping the evolution of neurofeedback research: a bibliometric analysis of trends and future directions. Front Hum Neurosci 2024; 18:1339444. [PMID: 38799297 PMCID: PMC11116792 DOI: 10.3389/fnhum.2024.1339444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction This study conducts a bibliometric analysis on neurofeedback research to assess its current state and potential future developments. Methods It examined 3,626 journal articles from the Web of Science (WoS) using co-citation and co-word methods. Results The co-citation analysis identified three major clusters: "Real-Time fMRI Neurofeedback and Self-Regulation of Brain Activity," "EEG Neurofeedback and Cognitive Performance Enhancement," and "Treatment of ADHD Using Neurofeedback." The co-word analysis highlighted four key clusters: "Neurofeedback in Mental Health Research," "Brain-Computer Interfaces for Stroke Rehabilitation," "Neurofeedback for ADHD in Youth," and "Neural Mechanisms of Emotion and Self-Regulation with Advanced Neuroimaging. Discussion This in-depth bibliometric study significantly enhances our understanding of the dynamic field of neurofeedback, indicating its potential in treating ADHD and improving performance. It offers non-invasive, ethical alternatives to conventional psychopharmacology and aligns with the trend toward personalized medicine, suggesting specialized solutions for mental health and rehabilitation as a growing focus in medical practice.
Collapse
Affiliation(s)
- Walton Wider
- Faculty of Business and Communications, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Jasmine Adela Mutang
- Faculty of Psychology and Education, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Bee Seok Chua
- Faculty of Psychology and Education, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas Tze Ping Pang
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Leilei Jiang
- Faculty of Education and Liberal Arts, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Ashraf Fauzi
- Faculty of Industrial Management, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia
| | - Lester Naces Udang
- Faculty of Liberal Arts, Shinawatra University, Pathumthani, Thailand
- College of Education, University of the Philippines, Diliman, Philippines
| |
Collapse
|
4
|
Orhanbulucu F, Latifoğlu F, Baydemir R. A New Hybrid Approach Based on Time Frequency Images and Deep Learning Methods for Diagnosis of Migraine Disease and Investigation of Stimulus Effect. Diagnostics (Basel) 2023; 13:diagnostics13111887. [PMID: 37296739 DOI: 10.3390/diagnostics13111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a neurological disorder that is associated with severe headaches and seriously affects the lives of patients. Diagnosing Migraine Disease (MD) can be laborious and time-consuming for specialists. For this reason, systems that can assist specialists in the early diagnosis of MD are important. Although migraine is one of the most common neurological diseases, there are very few studies on the diagnosis of MD, especially electroencephalogram (EEG)-and deep learning (DL)-based studies. For this reason, in this study, a new system has been proposed for the early diagnosis of EEG- and DL-based MD. In the proposed study, EEG signals obtained from the resting state (R), visual stimulus (V), and auditory stimulus (A) from 18 migraine patients and 21 healthy control (HC) groups were used. By applying continuous wavelet transform (CWT) and short-time Fourier transform (STFT) methods to these EEG signals, scalogram-spectrogram images were obtained in the time-frequency (T-F) plane. Then, these images were applied as inputs in three different convolutional neural networks (CNN) architectures (AlexNet, ResNet50, SqueezeNet) that proposed deep convolutional neural network (DCNN) models and classification was performed. The results of the classification process were evaluated, taking into account accuracy (acc.), sensitivity (sens.), specificity (spec.), and performance criteria, and the performances of the preferred methods and models in this study were compared. In this way, the situation, method, and model that showed the most successful performance for the early diagnosis of MD were determined. Although the classification results are close to each other, the resting state, CWT method, and AlexNet classifier showed the most successful performance (Acc: 99.74%, Sens: 99.9%, Spec: 99.52%). We think that the results obtained in this study are promising for the early diagnosis of MD and can be of help to experts.
Collapse
Affiliation(s)
- Fırat Orhanbulucu
- Department of Biomedical Engineering, Inonu University, Battalgazi 44000, Turkey
| | - Fatma Latifoğlu
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Recep Baydemir
- Department of Neurology, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
5
|
Tu JX, Lin XT, Ye HQ, Yang SL, Deng LF, Zhu RL, Wu L, Zhang XQ. Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) via CiteSpace and VOSviewer. Front Oncol 2022; 12:972357. [PMID: 36091151 PMCID: PMC9453500 DOI: 10.3389/fonc.2022.972357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/29/2022] [Indexed: 12/09/2022] Open
Abstract
ObjectiveUsing visual bibliometric analysis, the application and development of artificial intelligence in clinical esophageal cancer are summarized, and the research progress, hotspots, and emerging trends of artificial intelligence are elucidated.MethodsOn April 7th, 2022, articles and reviews regarding the application of AI in esophageal cancer, published between 2000 and 2022 were chosen from the Web of Science Core Collection. To conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field, VOSviewer (version 1.6.18), CiteSpace (version 5.8.R3), Microsoft Excel 2019, R 4.2, an online bibliometric platform (http://bibliometric.com/) and an online browser plugin (https://www.altmetric.com/) were used.ResultsA total of 918 papers were included, with 23,490 citations. 5,979 authors, 39,962 co-cited authors, and 42,992 co-cited papers were identified in the study. Most publications were from China (317). In terms of the H-index (45) and citations (9925), the United States topped the list. The journal “New England Journal of Medicine” of Medicine, General & Internal (IF = 91.25) published the most studies on this topic. The University of Amsterdam had the largest number of publications among all institutions. The past 22 years of research can be broadly divided into two periods. The 2000 to 2016 research period focused on the classification, identification and comparison of esophageal cancer. Recently (2017-2022), the application of artificial intelligence lies in endoscopy, diagnosis, and precision therapy, which have become the frontiers of this field. It is expected that closely esophageal cancer clinical measures based on big data analysis and related to precision will become the research hotspot in the future.ConclusionsAn increasing number of scholars are devoted to artificial intelligence-related esophageal cancer research. The research field of artificial intelligence in esophageal cancer has entered a new stage. In the future, there is a need to continue to strengthen cooperation between countries and institutions. Improving the diagnostic accuracy of esophageal imaging, big data-based treatment and prognosis prediction through deep learning technology will be the continuing focus of research. The application of AI in esophageal cancer still has many challenges to overcome before it can be utilized.
Collapse
Affiliation(s)
- Jia-xin Tu
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Xue-ting Lin
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Hui-qing Ye
- School of Public Health, Nanchang University, Nanchang, China
| | - Shan-lan Yang
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Li-fang Deng
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Ruo-ling Zhu
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Lei Wu
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
- *Correspondence: Lei Wu, ; Xiao-qiang Zhang,
| | - Xiao-qiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Lei Wu, ; Xiao-qiang Zhang,
| |
Collapse
|