1
|
Browne CJ, Mews P, Estill M, Zhou X, Holt LM, Futamura R, Shen L, Zhang B, Nestler EJ. Cocaine and morphine induce shared and divergent transcriptional regulation in nucleus accumbens D1 and D2 medium spiny neurons. Mol Psychiatry 2025:10.1038/s41380-025-03004-1. [PMID: 40188314 DOI: 10.1038/s41380-025-03004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Substance use disorders (SUDs) induce widespread molecular dysregulation in nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward, which is linked to neural and behavioral disturbances promoting addiction. Despite the overlapping symptomatology of SUDs, different drug classes exert partly unique influences on neural circuits, cell types, physiology, and gene expression. To better understand common and divergent molecular mechanisms governing SUD pathology, we characterized the cell-type-specific restructuring of the NAc transcriptional landscape after psychostimulant or opioid exposure. We combined fluorescence-activated nuclei sorting and deep RNA sequencing to profile NAc D1 and D2 medium spiny neurons (MSNs) across cocaine and morphine exposure paradigms, including initial exposure, prolonged withdrawal after repeated exposure, and re-exposure post-withdrawal. Our analyses reveal that D1 MSNs display many convergent transcriptional responses between the two drug classes, whereas D2 MSNs manifest highly divergent responses, with morphine causing more adaptations in this cell type. Utilizing multiscale embedded gene co-expression network analysis (MEGENA), we discerned transcriptional regulatory networks subserving biological functions altered by cocaine vs. morphine. We observed largely integrative engagement of overlapping gene networks across drug classes in D1 MSNs, but opposite regulation of key D2 networks, highlighting potential therapeutic gene network targets within MSNs. Analysis of gene regulatory systems at the level of enhancers revealed that morphine engages a unique enhancer landscape in D2 MSNs compared to cocaine. Our findings, and future work leveraging this dataset, will open avenues for the development of targeted therapeutic interventions, addressing the urgent need for more effective treatments for SUDs.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Dept. of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Dept. of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Allen MI, Nader MA. Animal models of cocaine use: importance of social context and co-use. Trends Pharmacol Sci 2025; 46:220-230. [PMID: 39875301 PMCID: PMC11890930 DOI: 10.1016/j.tips.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Cocaine-use disorders (CUDs) continue to be a major public health problem that requires effective treatments. Despite decades of preclinical research, there are no FDA-approved pharmacotherapies for cocaine use. While there are numerous potential reasons why no efficacious treatments have been identified or approved for cocaine use, we discuss two possible reasons in this review: the low number of studies incorporating social variables and the overlooking of the clinical reality of polysubstance use. These variables impact drug use across the substance-use cycle, including vulnerability, maintenance, and treatment. Recent preclinical and clinical data suggest that cocaine users who engage in polysubstance use should be viewed as a distinct and more prevalent population who require unique behavioral and pharmacological approaches to reduce cocaine use. Therefore, to understand the neurobiology and eventual treatments for CUDs, both variables should be included in animal models.
Collapse
Affiliation(s)
- Mia I Allen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
3
|
Floris G, Zanda MT, Dabrowski KR, Daws SE. Neuroinflammatory history results in overlapping transcriptional signatures with heroin exposure in the nucleus accumbens and alters responsiveness to heroin in male rats. Transl Psychiatry 2024; 14:500. [PMID: 39702361 DOI: 10.1038/s41398-024-03203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Recent progress in psychiatric research has highlighted neuroinflammation in the pathophysiology of opioid use disorder (OUD), suggesting that heightened immune responses in the brain may exacerbate opioid-related mechanisms. However, the molecular mechanisms resulting from neuroinflammation that impact opioid-induced behaviors and transcriptional pathways remain poorly understood. In this study, we have begun to address this critical knowledge gap by exploring the intersection between neuroinflammation and exposure to the opioid heroin, utilizing lipopolysaccharide (LPS)-induced neuroinflammation, to investigate transcriptional changes in the nucleus accumbens (NAc), an essential region in the mesolimbic dopamine system that mediates opioid reward. By integrating RNA sequencing with bioinformatic and statistical analyses, we observed significant transcriptional overlaps between neuroinflammation and experimenter-administered heroin exposure in the NAc. Furthermore, we identified a subset of NAc genes synergistically regulated by LPS and heroin, suggesting that LPS history may exacerbate some heroin-induced molecular neuroadaptations. We extended our findings to examine the impact of neuroinflammatory history on responsiveness to heroin in a locomotor sensitization assay and observed LPS-induced exacerbation of heroin sensitization, indicating that neuroinflammation may increase sensitivity to opioids' behavioral effects. Lastly, we performed comparative analysis of the NAc transcriptional profiles of LPS-heroin rats with those obtained from voluntary heroin intake in a rat model of heroin self-administration (SA) and published human OUD datasets. We observed significant convergence of the three datasets and identified transcriptional patterns in the preclinical models that recapitulated human OUD neuropathology, highlighting the utility of preclinical models to further investigate molecular mechanisms of OUD pathology. Overall, our study elucidates transcriptional interconnections between neuroinflammation and heroin exposure, and also provides evidence of the behavioral ramifications of such interactions. By bridging the gap between neuroinflammation and heroin exposure at the transcriptional level, our work provides valuable insights for future research aimed at mitigating the influence of inflammatory pathways in OUD.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Aggarwal M, Muskan, Kaur J, Udey B, Singh J. Tapentadol Withdrawal Dystonia in a Young Adult Male Patient With Opioid Use Disorder. J Clin Psychopharmacol 2024; 44:580-581. [PMID: 39836513 DOI: 10.1097/jcp.0000000000001908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Affiliation(s)
- Mahak Aggarwal
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | | | | | | | | |
Collapse
|
5
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
6
|
Khatri SN, Ulangkaya H, Maher EE, Sadek S, Hong M, Woodcox AM, Stoops WW, Gipson CD. Oxycodone withdrawal is associated with increased cocaine self-administration and aberrant accumbens glutamate plasticity in rats. Neuropharmacology 2024; 242:109773. [PMID: 37865136 PMCID: PMC10842432 DOI: 10.1016/j.neuropharm.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Individuals with opioid use disorder (OUD) frequently use other substances, including cocaine. Opioid withdrawal is associated with increased likelihood of cocaine use, which may represent an attempt to ameliorate opioid withdrawal effects. Clinically, 30% of co-using individuals take opioids and cocaine exclusively in a sequential manner. Preclinical studies evaluating mechanisms of drug use typically study drugs in isolation. However, polysubstance use is a highly prevalent clinical issue and thus, we established a novel preclinical model of sequential oxycodone and cocaine self-administration (SA) whereby rats acquired oxycodone and cocaine SA in an A-B-A-B design. Somatic signs of withdrawal were evaluated at 0, 22, and 24h following oxycodone SA, with the 24h timepoint representing somatic signs immediately following cocaine SA. Preclinically, aberrant glutamate signaling within the nucleus accumbens core (NAcore) occurs following use of cocaine or opioids, whereby medium spiny neurons (MSNs) rest in a potentiated or depotentiated state, respectively. Further, NAcore glial glutamate transport via GLT-1 is downregulated following SA of either drug alone. However, it is not clear if cocaine can exacerbate opioid-induced changes in glutamate signaling. In this study, NAcore GLT-1 protein and glutamate plasticity were measured (via AMPA/NMDA ratio) following SA. Rats acquired SA of both oxycodone and cocaine regardless of sex, and the acute oxycodone-induced increase in somatic signs at 22h was positively correlated with cocaine consumption during the cocaine testing phase. Cocaine use following oxycodone SA downregulated GLT-1 and reduced AMPA/NMDA ratios compared to cocaine use following food SA. Further, oxycodone SA alone was associated with reduced AMPA/NMDA ratio. Together, behavioral signs of oxycodone withdrawal may drive cocaine use and further dysregulate NAcore glutamate signaling.
Collapse
Affiliation(s)
- Shailesh N Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Hanaa Ulangkaya
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mei Hong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Andrea M Woodcox
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - William W Stoops
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Gayden J, Puig S, Srinivasan C, Phan BN, Abdelhady G, Buck SA, Gamble MC, Tejeda HA, Dong Y, Pfenning AR, Logan RW, Freyberg Z. Integrative multi-dimensional characterization of striatal projection neuron heterogeneity in adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539488. [PMID: 37205475 PMCID: PMC10187292 DOI: 10.1101/2023.05.04.539488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Striatal projection neurons (SPNs) are traditionally segregated into two subpopulations expressing dopamine (DA) D1-like or D2-like receptors. However, this dichotomy is challenged by recent evidence. Functional and expression studies raise important questions: do SPNs co-express different DA receptors, and do these differences reflect unique striatal spatial distributions and expression profiles? Using RNAscope in mouse striatum, we report heterogenous SPN subpopulations distributed across dorsal-ventral and rostral-caudal axes. SPN subpopulations co-express multiple DA receptors, including D1 and D2 (D1/2R) and D1 and D3. Our integrative approach using single-nuclei multi-omics analyses provides a simple consensus to describe SPNs across diverse datasets, connecting it to complementary spatial mapping. Combining RNAscope and multi-omics shows D1/2R SPNs further separate into distinct subtypes according to spatial organization and conserved marker genes. Each SPN cell type contributes uniquely to genetic risk for neuropsychiatric diseases. Our results bridge anatomy and transcriptomics to offer new understandings of striatal neuron heterogeneity.
Collapse
Affiliation(s)
- Jenesis Gayden
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephanie Puig
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Medical-Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ghada Abdelhady
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD 20894, USA
| | - Yan Dong
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Browne CJ, Mews P, Zhou X, Holt LM, Estill M, Futamura R, Schaefer A, Kenny PJ, Hurd YL, Shen L, Zhang B, Nestler EJ. Shared and divergent transcriptomic regulation in nucleus accumbens D1 and D2 medium spiny neurons by cocaine and morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558477. [PMID: 37781621 PMCID: PMC10541108 DOI: 10.1101/2023.09.19.558477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Substance use disorders (SUDs) induce widespread molecular dysregulation in the nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward. These molecular changes are thought to support lasting neural and behavioral disturbances that promote drug-seeking in addiction. However, different drug classes exert unique influences on neural circuits, cell types, physiology, and gene expression despite the overlapping symptomatology of SUDs. To better understand common and divergent molecular mechanisms governing SUD pathology, our goal was to survey cell-type-specific restructuring of the NAc transcriptional landscape in after psychostimulant or opioid exposure. We combined fluorescence-activated nuclei sorting and RNA sequencing to profile NAc D1 and D2 medium spiny neurons (MSNs) across cocaine and morphine exposure paradigms, including initial exposure, prolonged withdrawal after repeated exposure, and re-exposure post-withdrawal. Our analyses reveal that D1 MSNs display many convergent transcriptional responses across drug classes during exposure, whereas D2 MSNs manifest mostly divergent responses between cocaine and morphine, with morphine causing more adaptations in this cell type. Utilizing multiscale embedded gene co-expression network analysis (MEGENA), we discerned transcriptional regulatory networks subserving biological functions shared between cocaine and morphine. We observed largely integrative engagement of overlapping gene networks across drug classes in D1 MSNs, but opposite regulation of key D2 networks, highlighting potential therapeutic gene network targets within MSNs. These studies establish a landmark, cell-type-specific atlas of transcriptional regulation induced by cocaine and by morphine that can serve as a foundation for future studies towards mechanistic understanding of SUDs. Our findings, and future work leveraging this dataset, will pave the way for the development of targeted therapeutic interventions, addressing the urgent need for more effective treatments for cocaine use disorder and enhancing the existing strategies for opioid use disorder.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Xianxiao Zhou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Anne Schaefer
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
- Dept. of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Paul J Kenny
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Yasmin L Hurd
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
- Dept. of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Bin Zhang
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
- Dept. of Psychiatry, Icahn School of Medicine at Mount Sinai
- Dept. of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
9
|
Li MJ, Shoptaw SJ. Clinical management of psychostimulant withdrawal: review of the evidence. Addiction 2023; 118:750-762. [PMID: 36401591 PMCID: PMC10069411 DOI: 10.1111/add.16093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022]
Abstract
It is estimated that a majority of people who use psychostimulants, particularly methamphetamine (MA) and cocaine, experience withdrawal upon abstinence from sustained use. This review of clinical research reports the evidence regarding biomedical and behavioral treatments for psychostimulant withdrawal symptoms. It provides a framework for clinicians and scientists to increase impact on attenuating MA and cocaine withdrawal during initial and sustained abstinence. Articles reviewed included reports of controlled clinical trials (randomized or non-randomized) reporting at least one withdrawal symptom among the outcomes or specifically studying patients in withdrawal. Potential efficacy for MA withdrawal is noted for a few medications (mirtazapine, naltrexone, bupropion) and repetitive transcranial magnetic stimulation during acute (first week), early protracted (weeks 2-4) and late protracted (> 4 weeks) withdrawal phases. Topiramate shows mixed evidence of efficacy for cocaine withdrawal. In general, there is inconsistent signal for biomedical and behavioral treatments on MA and cocaine withdrawal.
Collapse
Affiliation(s)
- Michael J. Li
- Department of Family Medicine, University of California, Los Angeles, CA, USA
| | - Steven J. Shoptaw
- Department of Family Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ware OD, Sweeney MM, Cunningham C, Umbricht A, Stitzer M, Dunn KE. Bupropion Slow Release vs Placebo With Adaptive Incentives for Cocaine Use Disorder in Persons Receiving Methadone for Opioid Use Disorder: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e232278. [PMID: 36920397 PMCID: PMC10018324 DOI: 10.1001/jamanetworkopen.2023.2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
IMPORTANCE Opioid-stimulant co-use is a common problem with few evidence-based treatments. OBJECTIVE To examine bupropion slow release (SR) enhancement of a tailored abstinence incentive program for stimulant use in persons with opioid use disorder. DESIGN, SETTING, AND PARTICIPANTS This 26-week, double-blind, placebo-controlled randomized clinical trial with a 4-week follow-up period was conducted at 4 methadone treatment programs in Baltimore, Maryland. Included participants were persons receiving methadone for the treatment of opioid use disorder with past 3-month cocaine use and current cocaine use disorder between March 2015 and September 2019. Data were analyzed from November 2020 through August 2022. INTERVENTIONS A 6-week incentive induction period with monetary incentives for evidence of cocaine abstinence during thrice-weekly urine testing was conducted. Persons achieving 2 weeks of consecutive abstinence during induction were assigned to the relapse prevention group (20 individuals); otherwise, individuals were assigned to the abstinence initiation group (60 individuals). Participants were randomized within incentive groups to bupropion SR (150 mg oral twice daily; 40 participants) or placebo (40 participants). Incentives were available until week 26, and study medication ended week 30. MAIN OUTCOMES AND MEASURES The mean percentage of participants with cocaine abstinence (by negative urinalysis or self-report) during weeks 7 to 26 (ie, the incentive intervention period) and 27 to 30 (ie, the follow-up period) and the percentage of participants testing negative for cocaine at weeks 26 and 30 were assessed. Main effects of medication collapsed across incentive conditions and sensitivity analyses of medications within incentive conditions were assessed. Analyses were conducted in the modified intention-to-treat sample (ie, 80 individuals who received ≥1 dose of study medication) and completers (ie, 52 individuals who completed ≥1 visit during week 30). RESULTS Among 80 participants (42 Black [52.5% ] and 35 White [43.8%]; mean [SD] age, 45.7 (9.4) years; 52 males [65.0%]) receiving methadone for opioid use disorder, 40 participants were randomized to receive bupropion SR and 40 participants to receive placebo. No significant difference on urinalysis or self-reported cocaine use was observed between medication groups. Sensitivity analyses revealed differential patterns for incentive subgroups. Participants in the relapse prevention group had high abstinence (>80%; eg, during weeks 7-26 in the modified intention-to-treat analysis, 410 of 456 samples [89.9%] from participants in the bupropion SR group tested negative for cocaine) throughout the trial regardless of whether they were randomized to bupropion SR or placebo. Participants in the abstinence initiation group had better outcomes with bupropion SR than placebo throughout the trial (mean [SD] total number of samples testing negative for cocaine, 30.3 [21.6] samples for bupropion SR vs 17.1 [14.9] samples for placebo; P = .05) and more participants receiving bupropion SR than placebo were abstinent at the end of the study (20 of 30 participants [66.7%] vs 9 of 30 participants [30.0%]; P = .04). CONCLUSIONS AND RELEVANCE In this randomized clinical trial, an overall benefit for bupropion SR vs placebo when combined with a financial abstinence incentive program was not observed. Results among incentive subgroups suggest that continued evaluation of medications, including bupropion SR, for stimulant treatment using a tailored approach that factors early abstinence into study design and interpretation may be needed. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02111798.
Collapse
Affiliation(s)
- Orrin D. Ware
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- School of Social Work, University of North Carolina at Chapel Hill
| | - Mary M. Sweeney
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Now with National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Colin Cunningham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Annie Umbricht
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maxine Stitzer
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Friends Research Institute, Baltimore, Maryland
| | - Kelly E. Dunn
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|