1
|
Li Y, Li G, Yang L, Yan Y, Zhang N, Gao M, Hao D, Ye-Lin Y, Li CSR. Connectomics modeling of regional networks of white-matter fractional anisotropy to predict the severity of young adult drinking. Quant Imaging Med Surg 2025; 15:2405-2419. [PMID: 40160628 PMCID: PMC11948382 DOI: 10.21037/qims-24-2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025]
Abstract
Background Alcohol use impacts brain structure, including white matter integrity, which can be quantified by fractional anisotropy (FA) in diffusion tensor imaging (DTI). This study explored the relationship between the severity of alcohol consumption and white matter FA changes, and its sex differences, in young adults, using data from the Human Connectome Project. Methods We analyzed DTI data from 949 participants (491 females) and used principal component analysis (PCA) of 15 drinking metrics to quantify drinking severity. Connectome-based predictive modeling (CPM) was employed to predict the principal component of drinking severity from network FA values in a matrix of 116×116 regions. Mediation analyses were conducted to explore the interrelationships among networks identified by CPM, drinking severity, and rule-breaking behavior. Results Significant correlations were found between drinking severity and network FA values. Both men and women showed significant correlations between negative network connectivity and drinking severity (men: r=0.15, P=0.001; women: r=0.30, P<0.001). Sex differences were observed in the brain regions contributing to drinking severity predictions. Mediation analyses revealed significant inter-relationships between network features, drinking severity, and rule-breaking behavior. Conclusions The connectomics of white matter FA can predict the severity of alcohol consumption, and by incorporating brain network pathways, identify sex differences. This approach provides new clues to the biological basis of alcohol abuse and evaluates how these regions interact in broader brain networks for understanding alcohol misuse and its comorbidities.
Collapse
Affiliation(s)
- Yashuang Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
| | - Yan Yan
- Office of Academic Research, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Gao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
| | - Yiyao Ye-Lin
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Chiang-Shan R. Li
- Department of Psychiatry and Department of Neuroscience, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Hornoiu IL, Lee AM, Tan H, Nakovics H, Bach P, Mann K, Kiefer F, Sommer WH, Vollstädt-Klein S. The Role of Unawareness, Volition, and Neural Hyperconnectivity in Alcohol Use Disorder: A Functional Magnetic Resonance Imaging Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022:S2451-9022(22)00343-3. [PMID: 36948909 DOI: 10.1016/j.bpsc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Automated alcohol craving and habitual alcohol consumption characterize the later stages of alcohol use disorder (AUD). This study reanalyzed previously collected functional neuroimaging data in combination with the Craving Automated Scale for Alcohol (CAS-A) questionnaire to investigate the neural correlates and brain networks underlying automated drinking characterized by unawareness and nonvolition. METHODS We assessed 49 abstinent male patients with AUD and 36 male healthy control participants during a functional magnetic resonance imaging-based alcohol cue-reactivity task. We performed whole-brain analyses examining the associations between CAS-A scores and other clinical instruments and neural activation patterns in the alcohol versus neutral contrast. Furthermore, we performed psychophysiological interaction analyses to assess the functional connectivity between predefined seed regions and other brain areas. RESULTS In patients with AUD, higher CAS-A scores correlated with greater activation in dorsal striatal, pallidal, and prefrontal regions, including frontal white matter, and with lower activation in visual and motor processing regions. Between-group psychophysiological interaction analyses showed extensive connectivity between the seed regions inferior frontal gyrus and angular gyrus and several frontal, parietal, and temporal brain regions in AUD versus healthy control participants. CONCLUSIONS The present study applied a new lens to previously acquired alcohol cue-reactivity functional magnetic resonance imaging data by correlating neural activation patterns with clinical CAS-A scores to elucidate potential neural correlates of automated alcohol craving and habitual alcohol consumption. Our results support previous findings showing that alcohol addiction is associated with hyperactivation in habit-processing regions, with hypoactivation in areas mediating motor and attention processing, and with general hyperconnectivity.
Collapse
Affiliation(s)
- Iasmina Livia Hornoiu
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Alycia M Lee
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Haoye Tan
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Helmut Nakovics
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany; Mannheim Center of Translational Neuroscience (MCTN), University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany; Mannheim Center of Translational Neuroscience (MCTN), University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Wolfgang H Sommer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Bethanien Hospital for Psychiatry, Greifswald, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|