1
|
Liu J, Yang Y, Shi H, Wong KK, Raine A. Persistent Aggressive Behaviour From Childhood to Adolescence: The Influence of Environmental Tobacco Exposure and the Protective Role of Fish Consumption. CRIMINAL BEHAVIOUR AND MENTAL HEALTH : CBMH 2025; 35:41-50. [PMID: 39780027 PMCID: PMC11786934 DOI: 10.1002/cbm.2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Understanding changes in aggressive behaviour throughout child development is crucial for identifying effective intervention strategies. This study investigates children's aggressive behaviour in a longitudinal cohort and explores the role of environmental tobacco exposure and fish consumption as potential risk and protective factors, respectively, for persistent aggression in children. METHODS This study involved 452 children from the Chinese Jintan Cohort. Aggressive behaviour was assessed at ages 6 and 12 years using the child behaviour checklist (CBCL) and the Reactive-Proactive Aggression Questionnaire (RPQ), respectively. Information on lifestyle habits and living environment, including parental smoking, was collected via questionnaires. Linear regression was employed to investigate the association between childhood and adolescence aggressive behaviour with relevant covariates adjusted. Subsequently, we conducted interaction analyses to explore the moderating effects of parent smoking and fish consumption on the association. RESULTS We identified no significant association between childhood and adolescent aggression in the entire sample. Interaction analysis revealed environmental tobacco exposure as a moderator for the association. Specifically, persistent reactive and total aggression across development was only observed among those with environmental tobacco exposure (reactive: β = 0.549, p = 0.020; total: β = 0.654, p = 0.035). Furthermore, within the parent smoking subgroup, freshwater fish consumption at the age of 12 showed a marginally significant interaction with childhood aggression (reactive: p = 0.061; total: p = 0.095). A significant longitudinal association for aggression was found only among those consuming fish less frequently at the age of 12 years (reactive: β = 0.927, p = 0.002; total: β = 1.082, p = 0.006). CONCLUSION Our findings suggest exposure to environmental tobacco as a contributing factor to the lasting presence of aggressive behaviour during children's development, whereas freshwater fish consumption shows potential protective effects.
Collapse
Affiliation(s)
- Jianghong Liu
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yi Yang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Haoer Shi
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Adrian Raine
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
3
|
Prescott SL, Holton KF, Lowry CA, Nicholson JJ, Logan AC. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NEUROSCI 2024; 5:354-377. [PMID: 39483285 PMCID: PMC11477939 DOI: 10.3390/neurosci5030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Over the last decade there has been increasing interest in the links between the consumption of ultra-processed foods and various neuropsychiatric disorders, aggression, and antisocial behavior. Neurolaw is an interdisciplinary field that seeks to translate the rapid and voluminous advances in brain science into legal decisions and policy. An enhanced understanding of biophysiological mechanisms by which ultra-processed foods influence brain and behavior allows for a historical reexamination of one of forensic neuropsychiatry's most famous cases-The People v. White and its associated 'Twinkie Defense'. Here in this Viewpoint article, we pair original court transcripts with emergent research in neurolaw, including nutritional neuroscience, microbiome sciences (legalome), pre-clinical mechanistic research, and clinical intervention trials. Advances in neuroscience, and related fields such as the microbiome, are challenging basic assumptions in the criminal justice system, including notions of universal free will. Recent dismissals of criminal charges related to auto-brewery syndrome demonstrate that courts are open to advances at the intersection of neuromicrobiology and nutritional neuroscience, including those that relate to criminal intent and diminished capacity. As such, it is our contention that experts in the neurosciences will play an increasing role in shaping research that underpins 21st-century courtroom discourse, policy, and decision-making.
Collapse
Affiliation(s)
- Susan L Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA;
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen F Holton
- Departments of Health Studies and Neuroscience, American University, Washington, DC 20016, USA;
| | - Christopher A Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jeffrey J Nicholson
- Law and Government, Humber College Institute of Technology & Advanced Learning, Toronto, ON M9W 5L7, Canada;
| | - Alan C Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| |
Collapse
|
4
|
Raine A, Brodrick L. Omega-3 supplementation reduces aggressive behavior: A meta-analytic review of randomized controlled trials. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101956. [PMID: 38911617 PMCID: PMC11192490 DOI: 10.1016/j.avb.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
There is increasing interest in the use of omega-3 supplements to reduce aggressive behavior. This meta-analysis summarizes findings from 28 RCTs (randomized controlled trials) on omega-3 supplementation to reduce aggression, yielding 35 independent samples with a total of 3,918 participants. Three analyses were conducted where the unit of analysis was independent samples, independent studies, and independent laboratories. Significant effect sizes were observed for all three analyses (g = .16, .20, .28 respectively), averaging .22, in the direction of omega-3 supplementation reducing aggression. There was no evidence of publication bias, and sensitivity analyses confirmed findings. Moderator analyses were largely non-significant, indicating that beneficial effects are obtained across age, gender, recruitment sample, diagnoses, treatment duration, and dosage. Omega-3 also reduced both reactive and proactive forms of aggression, particularly with respect to self-reports (g = .27 and .20 respectively). It is concluded that there is now sufficient evidence to begin to implement omega-3 supplementation to reduce aggression in children and adults - irrespective of whether the setting is the community, the clinic, or the criminal justice system.
Collapse
Affiliation(s)
- Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania
| | - Lia Brodrick
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
5
|
McGrath AP, Horschler DJ, Hancock L. Feline Cognition and the Role of Nutrition: An Evolutionary Perspective and Historical Review. Animals (Basel) 2024; 14:1967. [PMID: 38998079 PMCID: PMC11240355 DOI: 10.3390/ani14131967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Research into cognition in cats and the impact of nutrition on cat cognitive health lags behind that in dogs but is receiving increased attention. In this review, we discuss the evolutionary history of the domesticated cat, describe possible drivers of domestication, and explore the interrelationships between nutrition and cat cognition. While most cat species are solitary, domesticated cats can live in social groups, engage in complex social encounters, and form strong attachments to humans. Researchers have recently started to study cat cognition using similar methods as those developed for dogs, with an initial primary focus on perception and social cognition. Similar to dogs, cats also show cognitive and behavioral changes associated with stress and aging, but these signs are often gradual and often considered a consequence of natural aging. Despite the fundamental role of nutrition in cognitive development, function, and maintenance, research into the association between nutrition and cognition in cats is only preliminary. Ultimately, additional research is needed to gain a full understanding of cat cognition and to explore the role of nutrition in the cognitive health of cats to help improve their welfare.
Collapse
|
6
|
Mustika D, Nishimura Y, Ueno S, Tominaga S, Shimizu T, Tajiri N, Jung CG, Hida H. Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat. Front Nutr 2024; 11:1356189. [PMID: 38765817 PMCID: PMC11099272 DOI: 10.3389/fnut.2024.1356189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model. Methods Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG. Results The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA. Conclusion MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.
Collapse
Affiliation(s)
- Dewi Mustika
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yu Nishimura
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shiori Tominaga
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Food and Nutrition, Shokei University Junior College, Kumamoto, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
7
|
Schoenthaler SJ, Prescott SL, Logan AC. Homicide or Happiness: Did Folate Fortification and Public Health Campaigns Influence Homicide Rates and the Great American Crime Decline? Nutrients 2024; 16:1075. [PMID: 38613108 PMCID: PMC11013728 DOI: 10.3390/nu16071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The last several years have witnessed a remarkable growth in research directed at nutrition and behavior, with increased interest in the field of nutritional criminology. It is becoming clear that dietary patterns and specific nutrients play an important role in cognition and behavior, including those related to aggression, violence, and antisocial activity. Included in this expanding knowledge base is the recognition that folate, through multiple pathways, including enzymatic reactions and gut microbiome ecology, plays a critical role in central nervous system functioning. These mechanistic advances allow for a retrospective analysis of a topic that remains unexplained-the sudden and unpredicted drop in homicide and other violent crime rates in the United States and other nations in the 1990s. Here, we revisit this marked reduction in homicide rates through the lens of the coincident public health campaign (and subsequent mandatory fortification) to increase folic acid intake. Based on objectively measured blood folate levels through the National Health and Nutrition Examination Surveys, there is little doubt that tissue folate witnessed a dramatic rise at the national level from 1988 through 2000. Drawing from accumulated and emerging research on the neurobehavioral aspects of folate, it is our contention that this relatively sudden and massive increase in tissue folate levels may have contributed to reductions in violent crime in the United States.
Collapse
Affiliation(s)
- Stephen J. Schoenthaler
- Department of Criminal Justice, College of the Arts, Humanities & Social Sciences, California State University, Turlock, CA 95202, USA;
| | - Susan L. Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|