1
|
Fu MR. A Geospatial-Social-Cultural Approach to Advance Health Care Equity. J Transcult Nurs 2025; 36:109-110. [PMID: 39882736 DOI: 10.1177/10436596251315309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
|
2
|
Plebani M, Nichols JH, Luppa PB, Greene D, Sciacovelli L, Shaw J, Khan AI, Carraro P, Freckmann G, Dimech W, Zaninotto M, Spannagl M, Huggett J, Kost GJ, Trenti T, Padoan A, Thomas A, Banfi G, Lippi G. Point-of-care testing: state-of-the art and perspectives. Clin Chem Lab Med 2025; 63:35-51. [PMID: 38880779 DOI: 10.1515/cclm-2024-0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Point-of-care testing (POCT) is becoming an increasingly popular way to perform laboratory tests closer to the patient. This option has several recognized advantages, such as accessibility, portability, speed, convenience, ease of use, ever-growing test panels, lower cumulative healthcare costs when used within appropriate clinical pathways, better patient empowerment and engagement, and reduction of certain pre-analytical errors, especially those related to specimen transportation. On the other hand, POCT also poses some limitations and risks, namely the risk of lower accuracy and reliability compared to traditional laboratory tests, quality control and connectivity issues, high dependence on operators (with varying levels of expertise or training), challenges related to patient data management, higher costs per individual test, regulatory and compliance issues such as the need for appropriate validation prior to clinical use (especially for rapid diagnostic tests; RDTs), as well as additional preanalytical sources of error that may remain undetected in this type of testing, which is usually based on whole blood samples (i.e., presence of interfering substances, clotting, hemolysis, etc.). There is no doubt that POCT is a breakthrough innovation in laboratory medicine, but the discussion on its appropriate use requires further debate and initiatives. This collective opinion paper, composed of abstracts of the lectures presented at the two-day expert meeting "Point-Of-Care-Testing: State of the Art and Perspective" (Venice, April 4-5, 2024), aims to provide a thoughtful overview of the state-of-the-art in POCT, its current applications, advantages and potential limitations, as well as some interesting reflections on the future perspectives of this particular field of laboratory medicine.
Collapse
Affiliation(s)
- Mario Plebani
- Department of Medicine, University of Padova, Padova, Italy
| | - James H Nichols
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter B Luppa
- Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Dina Greene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Laura Sciacovelli
- Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| | - Julie Shaw
- Eastern Ontario Regional Laboratories Association (EORLA), Department of Pathology and Laboratory Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, Canada
| | - Adil I Khan
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Paolo Carraro
- Department of Laboratory Medicine, Venice Hospital, Venice, Italy
| | - Guido Freckmann
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Wayne Dimech
- National Serology Reference Laboratory, Melbourne, Australia
| | | | - Michael Spannagl
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jim Huggett
- National Measurement Laboratory, LGC, Teddington, UK
| | - Gerald J Kost
- POCT - CTR, Pathology and Laboratory Medicine, School of Medicine, University of California, CA, USA
| | - Tommaso Trenti
- Laboratory Medicine and Pathology Department AUSL e AOU Modena, Modena, Italy
| | - Andrea Padoan
- Department of Medicine, DIMED, University of Padova, Padova, Italy
| | - Annette Thomas
- National PoCT Clinical Lead, National Pathology Programme, NHS Wales Executive, Cardiff, Wales, UK
| | - Giuseppe Banfi
- IRCCS Galeazzi-Sant'Ambrogio and Università Vita e Salute San Raffaele, Milan, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Kost GJ, Eng M, Zadran A. Geospatial Point-of-Care Testing Strategies for COVID-19 Resilience in Resource-Poor Settings: Rural Cambodia Field Study. JMIR Public Health Surveill 2024; 10:e47416. [PMID: 39190459 PMCID: PMC11387922 DOI: 10.2196/47416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Point-of-care testing (POCT) generates intrinsically fast, inherently spatial, and immediately actionable results. Lessons learned in rural Cambodia and California create a framework for planning and mobilizing POCT with telehealth interventions. Timely diagnosis can help communities assess the spread of highly infectious diseases, mitigate outbreaks, and manage risks. OBJECTIVE The aims of this study were to identify the need for POCT in Cambodian border provinces during peak COVID-19 outbreaks and to quantify geospatial gaps in access to diagnostics during community lockdowns. METHODS Data sources comprised focus groups, interactive learners, webinar participants, online contacts, academic experts, public health experts, and officials who determined diagnostic needs and priorities in rural Cambodia during peak COVID-19 outbreaks. We analyzed geographic distances and transit times to testing in border provinces and assessed a high-risk province, Banteay Meanchey, where people crossed borders daily leading to disease spread. We strategized access to rapid antigen testing and molecular diagnostics in the aforementioned province and applied mobile-testing experience among the impacted population. RESULTS COVID-19 outbreaks were difficult to manage in rural and isolated areas where diagnostics were insufficient to meet needs. The median transit time from border provinces (n=17) to testing sites was 73 (range 1-494) minutes, and in the high-risk Banteay Meanchey Province (n=9 districts), this transit time was 90 (range 10-150) minutes. Within border provinces, maximum versus minimum distances and access times for testing differed significantly (P<.001). Pareto plots revealed geospatial gaps in access to testing for people who are not centrally located. At the time of epidemic peaks in Southeast Asia, mathematical analyses showed that only one available rapid antigen test met the World Health Organization requirement of sensitivity >80%. We observed that in rural Solano and Yolo counties, California, vending machines and public libraries dispensing free COVID-19 test kits 24-7 improved public access to diagnostics. Mobile-testing vans equipped with COVID-19 antigen, reverse transcription polymerase chain reaction, and multiplex influenza A/B testing proved useful for differential diagnosis, public awareness, travel certifications, and telehealth treatment. CONCLUSIONS Rural diagnostic portals implemented in California demonstrated a feasible public health strategy for Cambodia. Automated dispensers and mobile POCT can respond to COVID-19 case surges and enhance preparedness. Point-of-need planning can enhance resilience and assure spatial justice. Public health assets should include higher-quality, lower-cost, readily accessible, and user-friendly POCT, such as self-testing for diagnosis, home molecular tests, distributed border detection for surveillance, and mobile diagnostics vans for quick telehealth treatment. High-risk settings will benefit from the synthesis of geospatially optimized POCT, automated 24-7 test access, and timely diagnosis of asymptomatic and symptomatic patients at points of need now, during new outbreaks, and in future pandemics.
Collapse
Affiliation(s)
- Gerald Joseph Kost
- Point-of-care Testing Center for Teaching and Research (POCT•CTR), School of Medicine, University of California, Davis, Davis, CA, United States
| | - Muyngim Eng
- University of Phutisastra, Phnom Penh, Cambodia
| | - Amanullah Zadran
- Public Health Sciences, POCT•CTR, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Kost GJ, Füzéry AK, Caratao LKR, Tinsay S, Zadran A, Ybañez AP. Using geographic rescue time contours, point-of-care strategies, and spatial care paths to prepare island communities for global warming, rising oceans, and weather disasters. Int J Health Geogr 2023; 22:38. [PMID: 38124128 PMCID: PMC10731708 DOI: 10.1186/s12942-023-00359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES To perform geographic contour analysis of sea and land ambulance rescue times in an archipelago subject to super typhoons; to design point-of-care testing strategies for medical emergencies and weather disasters made more intense by global warming and rising oceans; and to assess needs for prehospital testing on spatial care paths that accelerate decision making, increase efficiency, improve outcomes, and enhance standards of care in island nations. METHODS We performed needs assessments, inspected healthcare facilities, and collected ambulance rescue times from professionals in the Bantayan Archipelago, Philippines. We mapped sea/land ambulance rescue routes and time contours. To reveal gaps, we statistically compared the fastest and slowest patient rescue times from islands/islets and barangays to the District Hospital on Bantayan Island. We developed spatial care paths (the fastest routes to care) for acute myocardial infarction, community care, and infectious diseases. We generated a compendium of prehospital diagnostic testing and integrated outcomes evidence, diagnostic needs, and public health goals to recommend point-of-care strategies that build geographic health resilience. RESULTS We observed limited access to COVID-19 assays, absence of blood gas/pH testing for critical care support, and spatial gaps in land and airborne rescues that worsened during inclement weather and sea swells. Mean paired differences (slowest-fastest) in ambulance rescue times to the District Hospital for both islands and barangays were significant (P < 0.0001). Spatial care path analysis showed where point-of-care cardiac troponin testing should be implemented for expedited care of acute myocardial infarction. Geospatial strengths comprised distributed primary care that can be facilitated by point-of-care testing, logical interisland transfers for which decision making and triage could be accelerated with onboard diagnostics, and healthcare networks amenable to medical advances in prehospital testing that accelerate treatment. CONCLUSIONS Point-of-care testing should be positioned upstream close to homes and island populations that have prolonged rescue time contours. Geospatially optimized point-of-need diagnostics and distributed prehospital testing have high potential to improve outcomes. These improvements will potentially decrease disparities in mortality among archipelago versus urban dwellers, help improve island public health, and enhance resilience for increasingly adverse and frequent climate change weather disasters that impact vulnerable coastal areas. [350 words].
Collapse
Affiliation(s)
- Gerald J Kost
- Fulbright Scholar 2020-2022, ASEAN Program, Point-of-Care Testing Center for Teaching and Research (POCT•CTR), Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA, 95616, USA.
| | - Anna K Füzéry
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Samantha Tinsay
- Municipality of Bantayan, Bantayan-Santa Fe-Madridejos Primary Care Provider Network, Cebu, Philippines
| | - Amanullah Zadran
- POCT·CTR, Public Health Sciences, School of Medicine, University of California, Davis, USA
| | - Adrian P Ybañez
- Institute for Molecular Genetics, Parasitology, and Vector-Borne Diseases, and College of Veterinary Medicine, Cebu Technological University, Cebu, Philippines
| |
Collapse
|
5
|
Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K. Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases. ASIAN BIOMED 2023; 17:250-266. [PMID: 38161347 PMCID: PMC10754503 DOI: 10.2478/abm-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The point-of-care testing (POCT) approach has established itself as having remarkable importance in diagnosing various infectious and non-communicable diseases (NCDs). The POCT approach has succeeded in meeting the current demand for having diagnostic strategies that can provide fast, sensitive, and highly accurate test results without involving complicated procedures. This has been accomplished by introducing rapid bioanalytical tools or biosensors such as lateral flow assays (LFAs). The production cost of these tools is very low, allowing developing countries with limited resources to utilize them or produce them on their own. Thus, their use has grown in various fields in recent years. More importantly, LFAs have created the possibility for a new era of incorporating nanotechnology in disease diagnosis and have already attained significant commercial success worldwide, making POCT an essential approach not just for now but also for the future. In this review, we have provided an overview of POCT and its evolution into the most promising rapid diagnostic approach. We also elaborate on LFAs with a special focus on nucleic acid LFAs.
Collapse
Affiliation(s)
- Kumaravel Vealan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Sharizah Alimat
- Department of Chemistry Malaysia, Ministry of Science, Technology and Innovation, Petaling Jaya46661, Selangor, Malaysia
| | - Anandi S. Karumbati
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore560065, India
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| |
Collapse
|
6
|
Yared N. The Role of Point-of-Care Testing in Specific Populations. Clin Lab Med 2023; 43:181-187. [PMID: 37169441 DOI: 10.1016/j.cll.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Diagnostics for particular populations outside of traditional health care settings have driven development of point-of-care testing (POCT). POCT is particularly suitable for patients with infections conditions to mitigate infection spread via its provision in venues with less concern for stigma. Patients in rural or resource-limited settings can benefit from POCT through more timely diagnosis and linkage-to-care. However, gaps in POCT availability compared with better-resourced, urban counterparts persist. Leveraging communication technologies, using mobile clinics, changing national health care policy, and implementing novel geospatial science concepts can address limitations of POCT use and reduce POCT access gaps in these settings.
Collapse
Affiliation(s)
- Nicholas Yared
- Division of Infectious Diseases, Department of Medicine, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| |
Collapse
|
7
|
Zadran A, Ho AVD, Zadran L, Ventura Curiel IJ, Pham TT, Thuan DTB, Kost GJ. Optimizing Public Health Preparedness for Highly Infectious Diseases in Central Vietnam. Diagnostics (Basel) 2022; 12:diagnostics12092047. [PMID: 36140451 PMCID: PMC9497681 DOI: 10.3390/diagnostics12092047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Our primary objectives were (a) to determine the need for and the availability of point-of-care testing (POCT) for infectious diseases and (b) to recommend point-of-care testing strategies and Spatial Care PathsTM (SCPs) that enhance public health preparedness in the regional districts of Thua Thien Hue Province (TTHP), Central Vietnam, where we conducted field surveys. Medical professionals in seven community health centers (CHCs), seven district hospitals (DHs) and one provincial hospital (PH) participated. Survey questions (English and Vietnamese) determined the status of diagnostic testing capabilities for infectious diseases and other acute medical challenges in TTHP. Infectious disease testing was limited: six of seven CHCs (86%) lacked infectious disease tests. One CHC (14%, 1/7) had two forms of diagnostic tests available for the detection of malaria. All CHCs lacked adequate microbiology laboratories. District hospitals had few diagnostic tests for infectious diseases (tuberculosis and syphilis), blood culture (29%, 2/7), and pathogen culture (57%, 4/7) available. The PH had broader diagnostic testing capabilities but lacked preparedness for highly infectious disease threats (e.g., Ebola, MERS-CoV, SARS, Zika, and monkeypox). All sites reported having COVID-19 rapid antigen tests; COVID-19 RT-PCR tests were limited to higher-tier hospitals. We conclude that infectious disease diagnostic testing should be improved and POC tests must be supplied near patients’ homes and in primary care settings for the early detection of infected individuals and the mitigation of the spread of new COVID-19 variants and other highly infectious diseases.
Collapse
Affiliation(s)
- Amanullah Zadran
- Point-of-Care Testing Center for Teaching and Research (POCT CTR) Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
- Correspondence: (A.Z.); (G.J.K.); Tel.: +1-(510)-779-8698 (A.Z.)
| | - An V. D. Ho
- Department of Orthopedics and Rehabilitation, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - Layma Zadran
- Point-of-Care Testing Center for Teaching and Research (POCT CTR) Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Irene J. Ventura Curiel
- Point-of-Care Testing Center for Teaching and Research (POCT CTR) Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Tang-Tung Pham
- Faculty of Medicine, Phan Chau Trinh University, No 9 Nguyen Gia Thieu St, Dien Ban Ward, Dien Ngoc District, Danang City 550000, Vietnam
| | - Duong Thi Bich Thuan
- College of Health Sciences, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi 100000, Vietnam
| | - Gerald J. Kost
- Point-of-Care Testing Center for Teaching and Research (POCT CTR) Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
- Correspondence: (A.Z.); (G.J.K.); Tel.: +1-(510)-779-8698 (A.Z.)
| |
Collapse
|
8
|
Kost GJ. The Coronavirus Disease 2019 Spatial Care Path: Home, Community, and Emergency Diagnostic Portals. Diagnostics (Basel) 2022; 12:diagnostics12051216. [PMID: 35626375 PMCID: PMC9140623 DOI: 10.3390/diagnostics12051216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022] Open
Abstract
This research uses mathematically derived visual logistics to interpret COVID-19 molecular and rapid antigen test (RAgT) performance, determine prevalence boundaries where risk exceeds expectations, and evaluate benefits of recursive testing along home, community, and emergency spatial care paths. Mathematica and open access software helped graph relationships, compare performance patterns, and perform recursive computations. Tiered sensitivity/specificity comprise: (T1) 90%/95%; (T2) 95%/97.5%; and (T3) 100%/≥99%, respectively. In emergency medicine, median RAgT performance peaks at 13.2% prevalence, then falls below T1, generating risky prevalence boundaries. RAgTs in pediatric ERs/EDs parallel this pattern with asymptomatic worse than symptomatic performance. In communities, RAgTs display large uncertainty with median prevalence boundary of 14.8% for 1/20 missed diagnoses, and at prevalence > 33.3−36.9% risk 10% false omissions for symptomatic subjects. Recursive testing improves home RAgT performance. Home molecular tests elevate performance above T1 but lack adequate validation. Widespread RAgT availability encourages self-testing. Asymptomatic RAgT and PCR-based saliva testing present the highest chance of missed diagnoses. Home testing twice, once just before mingling, and molecular-based self-testing, help avoid false omissions. Community and ER/ED RAgTs can identify contagiousness in low prevalence. Real-world trials of performance, cost-effectiveness, and public health impact could identify home molecular diagnostics as an optimal diagnostic portal.
Collapse
Affiliation(s)
- Gerald J Kost
- Fulbright Scholar 2020-2022, ASEAN Program, Point-of-Care Testing Center for Teaching and Research (POCT•CTR), Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Tran NK, Albahra S, May L, Waldman S, Crabtree S, Bainbridge S, Rashidi H. Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. Clin Chem 2021; 68:125-133. [PMID: 34969102 PMCID: PMC9383167 DOI: 10.1093/clinchem/hvab239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/15/2021] [Indexed: 12/31/2022]
Abstract
Background Artificial intelligence (AI) and machine learning (ML) are poised to transform infectious disease testing. Uniquely, infectious disease testing is technologically diverse spaces in laboratory medicine, where multiple platforms and approaches may be required to support clinical decision-making. Despite advances in laboratory informatics, the vast array of infectious disease data is constrained by human analytical limitations. Machine learning can exploit multiple data streams, including but not limited to laboratory information and overcome human limitations to provide physicians with predictive and actionable results. As a quickly evolving area of computer science, laboratory professionals should become aware of AI/ML applications for infectious disease testing as more platforms are become commercially available. Content In this review we: (a) define both AI/ML, (b) provide an overview of common ML approaches used in laboratory medicine, (c) describe the current AI/ML landscape as it relates infectious disease testing, and (d) discuss the future evolution AI/ML for infectious disease testing in both laboratory and point-of-care applications. Summary The review provides an important educational overview of AI/ML technique in the context of infectious disease testing. This includes supervised ML approaches, which are frequently used in laboratory medicine applications including infectious diseases, such as COVID-19, sepsis, hepatitis, malaria, meningitis, Lyme disease, and tuberculosis. We also apply the concept of “data fusion” describing the future of laboratory testing where multiple data streams are integrated by AI/ML to provide actionable clinical knowledge.
Collapse
Affiliation(s)
- Nam K Tran
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Samer Albahra
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Larissa May
- Department of Emergency Medicine, UC Davis School of Medicine, CA
| | - Sarah Waldman
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA
| | - Scott Crabtree
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA
| | - Scott Bainbridge
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Hooman Rashidi
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| |
Collapse
|
10
|
Levy P, McGlynn E, Hill AB, Zhang L, Korzeniewski SJ, Foster B, Criswell J, O’Brien C, Dawood K, Baird L, Shanley CJ. From pandemic response to portable population health: A formative evaluation of the Detroit mobile health unit program. PLoS One 2021; 16:e0256908. [PMID: 34847164 PMCID: PMC8631611 DOI: 10.1371/journal.pone.0256908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
This article describes our experience developing a novel mobile health unit (MHU) program in the Detroit, Michigan, metropolitan area. Our main objectives were to improve healthcare accessibility, quality and equity in our community during the novel coronavirus pandemic. While initially focused on SARS-CoV-2 testing, our program quickly evolved to include preventive health services. The MHU program began as a location-based SARS-CoV-2 testing strategy coordinated with local and state public health agencies. Community needs motivated further program expansion to include additional preventive healthcare and social services. MHU deployment was targeted to disease "hotspots" based on publicly available SARS-CoV-2 testing data and community-level information about social vulnerability. This formative evaluation explores whether our MHU deployment strategy enabled us to reach patients from communities with heightened social vulnerability as intended. From 3/20/20-3/24/21, the Detroit MHU program reached a total of 32,523 people. The proportion of patients who resided in communities with top quartile Centers for Disease Control and Prevention Social Vulnerability Index rankings increased from 25% during location-based "drive-through" SARS-CoV-2 testing (3/20/20-4/13/20) to 27% after pivoting to a mobile platform (4/13/20-to-8/31/20; p = 0.01). The adoption of a data-driven deployment strategy resulted in further improvement; 41% of the patients who sought MHU services from 9/1/20-to-3/24/21 lived in vulnerable communities (Cochrane Armitage test for trend, p<0.001). Since 10/1/21, 1,837 people received social service referrals and, as of 3/15/21, 4,603 were administered at least one dose of COVID-19 vaccine. Our MHU program demonstrates the capacity to provide needed healthcare and social services to difficult-to-reach populations from areas with heightened social vulnerability. This model can be expanded to meet emerging pandemic needs, but it is also uniquely capable of improving health equity by addressing longstanding gaps in primary care and social services in vulnerable communities.
Collapse
Affiliation(s)
- Phillip Levy
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Erin McGlynn
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Alex B. Hill
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Liying Zhang
- Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Steven J. Korzeniewski
- Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bethany Foster
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jasmine Criswell
- Wayne Health, Wayne State University, Detroit, Michigan, United States of America
| | - Caitlin O’Brien
- Wayne Health, Wayne State University, Detroit, Michigan, United States of America
| | - Katee Dawood
- Wayne Health, Wayne State University, Detroit, Michigan, United States of America
| | - Lauren Baird
- Wayne Health, Wayne State University, Detroit, Michigan, United States of America
| | - Charles J. Shanley
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
11
|
Kost GJ. Public Health Education Should Include Point-of-Care Testing: Lessons Learned from the Covid-19 Pandemic. EJIFCC 2021; 32:311-327. [PMID: 34819821 PMCID: PMC8592632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
GOAL The goal is to present key principles of point-of-care testing (POCT) in educational curricula that meet critical needs for rapid decision-making in disasters, outbreaks of highly infectious diseases, emergency management, and complex crises. OBSERVATIONS The coronavirus disease 19 (COVID-19) pandemic unequivocally proved the value of POC strategies. Striking needs identified by COVID-19 challenges have yet to be entirely fulfilled. A comprehensive national survey showed absence of POCT training in public health colleges, schools, and programs. Fundamental improvements in national structuring of POC knowledge, skills, experience, training, dissemination, accreditation, and licensing are necessary, so that multidisciplinary public health teams can respond effectively and efficiently by geospatially optimizing the control and mitigation of highly infectious diseases and other critical challenges. CONCLUSIONS Four sets of POCT learning objectives were developed for public health and other educational institutions. Global implementation of POC diagnostics in the hands of trained personnel will help avoid untimely worldwide crises, huge economic losses, uncounted excess mortality, and sudden disruptive surges of dangerous infectious threats to personal security and cultural stability.
Collapse
Affiliation(s)
- Gerald J. Kost
- Corresponding author: Gerald J. Kost, MD, PhD, MS, FAACC 506 Citadel Drive, Davis CA 95616 Unites States Phone: 1-530-574-3945 E-mail:
| |
Collapse
|
12
|
Kost GJ. DIAGNOSTIC STRATEGIES FOR ENDEMIC CORONAVIRUS DISEASE 2019 (COVID-19): RAPID ANTIGEN TESTS, REPEAT TESTING, AND PREVALENCE BOUNDARIES. Arch Pathol Lab Med 2021; 146:16-25. [PMID: 34551070 DOI: 10.5858/arpa.2021-0386-sa] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT - Coronavirus disease 2019 (COVID-19) rapid antigen tests generate intrinsically fast, inherently spatial, and immediately actionable results. They quickly confirm COVID-19, but weakly rule out infection. Test performance depends on prevalence and testing protocol. Both affect predictive values. OBJECTIVES - To use original mathematics and visual logistics for interpreting COVID-19 rapid antigen test performance patterns, gauge the influence of prevalence, and evaluate repeated testing. DESIGN - Mathematica and open access software helped graph relationships, perform recursive computations, and compare performance patterns. PubMed retrieved articles addressing endemic COVID-19. RESULTS - Tiered sensitivity/specificity comprise: T1) 90%/95%; T2) 95%/97.5%; and T3) 100%/≥99%, respectively. Performance of self- and home antigen tests with Food and Drug Administration Emergency Use Authorization peaks in low prevalence. Fall-off in performance appears with increasing prevalence because suboptimal sensitivity creates false negatives. The rate of false omissions limits clinical use because of prevalence boundaries based on tolerance for risk. Mathematical analysis supports testing twice to improve predictive values and extend prevalence boundaries nearly to levels of herd immunity. CONCLUSIONS - COVID-19 is quickly becoming endemic. Suboptimal sensitivity of rapid antigen tests limits performance in high prevalence. Risk of contagion in packed spaces (e.g., airplanes) might be avoided with dual testing 36 hours apart, allowing time for viral load to increase. Awareness of community prevalence and proof of improved performance with repeated testing will help manage COVID-19 risk, while meeting rapid decision-making needs for highly contagious and new variants (e.g., Delta). New COVID-19 variants call for high quality, low cost, readily accessible, fast, user friendly, and ubiquitous point-of-care testing.
Collapse
Affiliation(s)
- Gerald J Kost
- From the Department of Pathology and Laboratory Medicine, POCT•CTR, School of Medicine, University of California, Davis
| |
Collapse
|
13
|
Kost GJ. The Impact of Increasing Disease Prevalence, False Omissions, and Diagnostic Uncertainty on Coronavirus Disease 2019 (COVID-19) Test Performance. Arch Pathol Lab Med 2021; 145:797-813. [PMID: 33684204 DOI: 10.5858/arpa.2020-0716-sa] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Coronavirus disease 2019 (COVID-19) test performance depends on predictive values in settings of increasing disease prevalence. Geospatially distributed diagnostics with minimal uncertainty facilitate efficient point-of-need strategies. OBJECTIVES.— To use original mathematics to interpret COVID-19 test metrics; assess US Food and Drug Administration Emergency Use Authorizations and Health Canada targets; compare predictive values for multiplex, antigen, polymerase chain reaction kit, point-of-care antibody, and home tests; enhance test performance; and improve decision-making. DESIGN.— PubMed/newsprint-generated articles documenting prevalence. Mathematica and open access software helped perform recursive calculations, graph multivariate relationships, and visualize performance by comparing predictive value geometric mean-squared patterns. RESULTS.— Tiered sensitivity/specificity comprised: T1, 90%, 95%; T2, 95%, 97.5%; and T3, 100%, ≥99%. Tier 1 false negatives exceeded true negatives at >90.5% prevalence; false positives exceeded true positives at <5.3% prevalence. High-sensitivity/specificity tests reduced false negatives and false positives, yielding superior predictive values. Recursive testing improved predictive values. Visual logistics facilitated test comparisons. Antigen test quality fell off as prevalence increased. Multiplex severe acute respiratory syndrome (SARS)-CoV-2)*influenza A/B*respiratory syncytial virus testing performed reasonably well compared with tier 3. Tier 3 performance with a tier 2 confidence band lower limit will generate excellent performance and reliability. CONCLUSIONS.— The overriding principle is to select the best combined performance and reliability pattern for the prevalence bracket. Some public health professionals recommend repetitive testing to compensate for low sensitivity. More logically, improved COVID-19 assays with less uncertainty conserve resources. Multiplex differentiation of COVID-19 from influenza A/B-respiratory syncytial virus represents an effective strategy if seasonal flu surges next year.
Collapse
Affiliation(s)
- Gerald J Kost
- From the Department of Pathology and Laboratory Medicine, POCT•CTR, School of Medicine, University of California, Davis
| |
Collapse
|
14
|
Meng F, Huo W, Lian J, Zhang L, Shi X, Jesorka A, Gao Y. A tandem giant magnetoresistance assay for one-shot quantification of clinically relevant concentrations of N-terminal pro-B-type natriuretic peptide in human blood. Anal Bioanal Chem 2021; 413:2943-2949. [PMID: 33624128 PMCID: PMC8043887 DOI: 10.1007/s00216-021-03227-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
We report a microfluidic sandwich immunoassay constructed around a dual-giant magnetoresistance (GMR) sensor array to quantify the heart failure biomarker NT-proBNP in human plasma at the clinically relevant concentration levels between 15 pg/mL and 40 ng/mL. The broad dynamic range was achieved by differential coating of two identical GMR sensors operated in tandem, and combining two standard curves. The detection limit was determined as 5 pg/mL. The assay, involving 53 plasma samples from patients with different cardiovascular diseases, was validated against the Roche Cobas e411 analyzer. The salient features of this system are its wide concentration range, low detection limit, small sample volume requirement (50 μL), and the need for a short measurement time of 15 min, making it a prospective candidate for practical use in point of care analysis.
Collapse
Affiliation(s)
- Fanda Meng
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China. .,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China. .,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Weisong Huo
- Dongguan Bosh Biotechnologies, Ltd., Dongguan, 523808, China
| | - Jie Lian
- College of Criminal Investigation, People's Public Security University of China, Beijing, 100038, China
| | - Lei Zhang
- Dongguan Bosh Biotechnologies, Ltd., Dongguan, 523808, China
| | - Xizeng Shi
- Dongguan Bosh Biotechnologies, Ltd., Dongguan, 523808, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100149, China.
| |
Collapse
|
15
|
Jayamani J, Thangaraju P, Thangaraju E, Venkatesan S. Decentralisation of healthcare system due to COVID-19 and its impact on hospital based laboratories - Pandemic panic patients' reflection? JOURNAL OF RESPONSIBLE TECHNOLOGY 2020; 1:100003. [PMID: 38620674 PMCID: PMC7834502 DOI: 10.1016/j.jrt.2020.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022]
Affiliation(s)
| | - Pugazhenthan Thangaraju
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhatisgarh, India
| | - Eswaran Thangaraju
- AKT Memorial College of Engineering And Technology, Kallakurichi, Tamilnadu, India
| | - Sajitha Venkatesan
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhatisgarh, India
| |
Collapse
|
16
|
|
17
|
Geographical Accessibility to Glucose-6-Phosphate Dioxygenase Deficiency Point-of-Care Testing for Antenatal Care in Ghana. Diagnostics (Basel) 2020; 10:diagnostics10040229. [PMID: 32316233 PMCID: PMC7235997 DOI: 10.3390/diagnostics10040229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency screening test is essential for malaria treatment, control, and elimination programs. G6PD deficient individuals are at high risk of severe hemolysis when given anti-malarial drugs such as primaquine, quinine, other sulphonamide-containing medicines, and chloroquine, which has recently been shown to be potent for the treatment of coronavirus disease (COVID-19). We evaluated the geographical accessibility to POC testing for G6PD deficiency in Ghana, a malaria-endemic country. Methods: We obtained the geographic information of 100 randomly sampled clinics previously included in a cross-sectional survey. We also obtained the geolocated data of all public hospitals providing G6PD deficiency testing services in the region. Using ArcGIS 10.5, we quantified geographical access to G6PD deficiency screening test and identified clinics as well as visualize locations with poor access for targeted improvement. The travel time was estimated using an assumed speed of 20 km per hour. Findings: Of the 100 clinics, 58% were Community-based Health Planning and Services facilities, and 42% were sub-district health centers. The majority (92%) were Ghana Health Service facilities, and the remaining 8% were Christian Health Association of Ghana facilities. Access to G6PD deficiency screening test was varied across the districts, and G6PD deficiency screening test was available in all eight public hospitals. This implies that the health facility-to-population ratio for G6PD deficiency testing service was approximately 1:159,210 (8/1,273,677) population. The spatial analysis quantified the current mean distance to a G6PD deficiency testing service from all locations in the region to be 34 ± 14 km, and travel time (68 ± 27 min). The estimated mean distance from a clinic to a district hospital for G6PD deficiency testing services was 15 ± 11 km, and travel time (46 ± 33 min). Conclusion: Access to POC testing for G6PD deficiency in Ghana was poor. Given the challenges associated with G6PD deficiency, it would be essential to improve access to G6PD deficiency POC testing to facilitate administration of sulphadoxine-pyrimethamine to pregnant women, full implementation of the malaria control program in Ghana, and treatment of COVID-19 patients with chloroquine in malaria-endemic countries. To enable the World Health Organization include appropriate G6PD POC diagnostic tests in its list of essential in-vitro diagnostics for use in resource-limited settings, we recommend a wider evaluation of available POC diagnostic tests for G6PD deficiency, particularly in malaria-endemic countries.
Collapse
|