1
|
Zhang H, Luo P, Jiang H, Jiang A, Wei W, Wu C. Deciphering the molecular heterogeneity of soft tissue sarcoma by integrating multiomics and single cell sequence. Int J Biochem Cell Biol 2025:106801. [PMID: 40381905 DOI: 10.1016/j.biocel.2025.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/08/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Soft tissue sarcoma is a highly malignant tumor with extensive heterogeneity across multiple omics. However, a comprehensive multi-omics subtyping system has not yet been established. METHODS We integrated sarcoma multi-omics data, including clinical information, transcriptome expression profiles, DNA methylation, and somatic mutations. Using ten advanced clustering algorithms, we identified robust subtypes and validated the reproducibility of our analysis in two independent external datasets. We also identified subtype-specific treatment strategies and analyzed the differences in microenvironments between subtypes using single-cell data. RESULTS Based on multi-omics subtyping, we identified two novel sarcoma molecular subtypes, named sarcoma multi-omics subtype 1 (SAMS1) and SAMS2. SAMS2 exhibited a poorer prognosis, with significantly activated Myc, glycolysis, and Wnt beta-catenin signaling pathways. SAMS2 was characterized by a lower abundance of immune cell infiltration and anti-tumor immunity deficiency, which owned a lower response rate to immunotherapy but was sensitive to certain targeted drugs, including pazopanib, axitinib, thapsigargin, and elesclomol. MK886 and NU1025 were identified as effective therapeutic targets for the SAMS2. In SAMS2-like tumor epithelial cells, HOXB13/COL16A1 and BASP1 regulated epithelial-mesenchymal transition. We found that WNT7B was highly expressed in STS and was associated with poor patient prognosis, suggesting its potential as a novel therapeutic target for STS patients. CONCLUSION The STS molecular subtyping system based on multi-omics data effectively distinguishes patients with poor prognosis. The subtyping results are robust and reliable, providing new insights for the precise diagnosis and treatment of these patients.
Collapse
Affiliation(s)
- Haixiang Zhang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Jiang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China; School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Wei Wei
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China; School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
| | - Chunbiao Wu
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China; School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Yang Q, Ye F, Li L, Chu J, Tian Y, Cao J, Gan S, Jiang A. Integration analysis of PLAUR as a sunitinib resistance and macrophage related biomarker in ccRCC, an in silicon and experimental study. J Biomol Struct Dyn 2025; 43:3956-3973. [PMID: 38173169 DOI: 10.1080/07391102.2023.2300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sunitinib remains the preferred systemic treatment option for specific patients with advanced RCC who are ineligible for immune therapy. However, it's essential to recognize that Sunitinib fails to elicit a favourable response in all patients. Moreover, most patients eventually develop resistance to Sunitinib. Therefore, identifying new targets associated with Sunitinib resistance is crucial. Utilizing multiple datasets from public cohorts, we conducted an exhaustive analysis and identified a total of 8 microRNAs and 112 mRNAs displaying significant expression differences between Sunitinib responsive and resistant groups. A particular set of six genes, specifically NIPSNAP1, STK40, SDC4, NEU1, TBC1D9, and PLAUR, were identified as highly significant via WGCNA. To delve deeper into the resistance mechanisms, we performed additional investigations using cell, molecular, and flow cytometry tests. These studies confirmed PLAUR's pivotal role in fostering Sunitinib resistance, both in vitro and in vivo. Our findings suggest that PLAUR could be a promising therapeutic target across various cancer types. In conclusion, this investigation not only uncovers vital genes and microRNAs associated with Sunitinib resistance in RCC but also introduces PLAUR as a prospective therapeutic target for diverse cancers. The outcomes contribute to advancing personalized healthcare and developing superior therapeutic strategies.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Fangdie Ye
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Li
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Jian Chu
- Department of Urology, The Luodian Hospital in Baoshan District of Shanghai, China
| | - Yijun Tian
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Cao
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sishun Gan
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Xiong B, Liu W, Liu Y, Chen T, Lin A, Song J, Qu L, Luo P, Jiang A, Wang L. A Multi-Omics Prognostic Model Capturing Tumor Stemness and the Immune Microenvironment in Clear Cell Renal Cell Carcinoma. Biomedicines 2024; 12:2171. [PMID: 39457484 PMCID: PMC11504857 DOI: 10.3390/biomedicines12102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer stem-like cells (CSCs), a distinct subset recognized for their stem cell-like abilities, are intimately linked to the resistance to radiotherapy, metastatic behaviors, and self-renewal capacities in tumors. Despite their relevance, the definitive traits and importance of CSCs in the realm of oncology are still not fully comprehended, particularly in the context of clear cell renal cell carcinoma (ccRCC). A comprehensive understanding of these CSCs' properties in relation to stemness, and their impact on the efficacy of treatment and resistance to medication, is of paramount importance. Methods: In a meticulous research effort, we have identified new molecular categories designated as CRCS1 and CRCS2 through the application of an unsupervised clustering algorithm. The analysis of these subtypes included a comprehensive examination of the tumor immune environment, patterns of metabolic activity, progression of the disease, and its response to immunotherapy. In addition, we have delved into understanding these subtypes' distinctive clinical presentations, the landscape of their genomic alterations, and the likelihood of their response to various pharmacological interventions. Proceeding from these insights, prognostic models were developed that could potentially forecast the outcomes for patients with ccRCC, as well as inform strategies for the surveillance of recurrence after treatment and the handling of drug-resistant scenarios. Results: Compared with CRCS1, CRCS2 patients had a lower clinical stage/grading and a better prognosis. The CRCS2 subtype was in a hypoxic state and was characterized by suppression and exclusion of immune function, which was sensitive to gefitinib, erlotinib, and saracatinib. The constructed prognostic risk model performed well in both training and validation cohorts, helping to identify patients who may benefit from specific treatments or who are at risk of recurrence and drug resistance. A novel therapeutic target, SAA2, regulating neutrophil and fibroblast infiltration, and, thus promoting ccRCC progression, was identified. Conclusions: Our findings highlight the key role of CSCs in shaping the ccRCC tumor microenvironment, crucial for therapy research and clinical guidance. Recognizing tumor stemness helps to predict treatment efficacy, recurrence, and drug resistance, informing treatment strategies and enhancing ccRCC patient outcomes.
Collapse
Affiliation(s)
- Beibei Xiong
- Department of Oncology, The First People’s Hospital of Shuangliu District, Chengdu 610200, China;
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Ying Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Tong Chen
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| |
Collapse
|
4
|
Tomić T, Tomić D, Vukoja M, Kraljević M, Ljevak I, Glamočlija U, Tomić V, Vukojević K, Beljan Perak R, Šoljić V. Clinical Significance and Expression Pattern of RIP5 and VGLL4 in Clear Cell Renal Cell Carcinoma Patients Treated with Sunitinib. Biomedicines 2024; 12:149. [PMID: 38255254 PMCID: PMC10813538 DOI: 10.3390/biomedicines12010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
While clear cell renal cell carcinoma (ccRCC) is curable, advanced metastatic (mRCC) remains a clinical challenge. We analyzed clinical, pathohistological, and molecular data (Receptor Interacting Protein 5-RIP5 and Vestigial Like Family Member 4-VGLL4 expression) of 55 mRCC patients treated with first-line treatment with sunitinib. The trend of linear increase in the protein expression of RIP5 was observed with the progression of tumor grade. Overall, 80% of RIP5-positive cells were in the control kidneys and high-grade mRCC. On the contrary, RIP5 displayed low expression in grade 2 mRCC (5.63%). The trend of linear decrease in the expression of VGLL4 was observed with the progression of tumor grade. The highest protein expression of VGLL4 was observed in grade 2 (87.82%) in comparison to grade 3 and 4 and control. High expression of RIP5 mRNA was associated with longer first-line overall survival and longer progression-free survival in mRCC. In addition, a high VGLL4 mRNA expression showed better overall survival in patients with ccRCC. In conclusion, high mRNA expression of RIP5 and VGLL4 are important markers of better survival rates in mRCC patients.
Collapse
Affiliation(s)
- Tanja Tomić
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
| | - Davor Tomić
- Department of Urology, University Hospital Center Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Marija Kraljević
- Department of Oncology, University Hospital Center Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Ivona Ljevak
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
| | - Una Glamočlija
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Vajdana Tomić
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
- Department of Gynecology, University Hospital Center Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Renata Beljan Perak
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Violeta Šoljić
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| |
Collapse
|
5
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
6
|
Wang B, Li M, Li R. Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma. Front Oncol 2023; 13:1169395. [PMID: 37091151 PMCID: PMC10113630 DOI: 10.3389/fonc.2023.1169395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Background Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients with high-risk, guiding individualized diagnosis and treatment of patients, and identifying effective prognostic targets are urgent problems to be solved in current research on KIRP. Methods In this study, data of multi omics for patients with KIRP were collected from TCGA database, including mRNAs, lncRNAs, miRNAs, data of methylation, and data of gene mutations. Data of multi-omics related to prognosis of patients with KIRP were selected for each omics level. Further, multi omics data related to prognosis were integrated into cluster analysis based on ten clustering algorithms using MOVICS package. The multi omics-based cancer subtype (MOCS) were compared on biological characteristics, immune microenvironmental cell abundance, immune checkpoint, genomic mutation, drug sensitivity using R packages, including GSVA, clusterProfiler, TIMER, CIBERSORT, CIBERSORT-ABS, quanTIseq, MCPcounter, xCell, EPIC, GISTIC, and pRRophetic algorithms. Results The top ten OS-related factors for KIRP patients were annotated. Patients with KIRP were divided into MOCS1, MOCS2, and MOCS3. Patients in the MOCS3 subtype were observed with shorter overall survival time than patients in the MOCS1 and MOCS2 subtypes. MOCS1 was negatively correlated with immune-related pathways, and we found global dysfunction of cancer-related pathways among the three MOCS subtypes. We evaluated the activity profiles of regulons among the three MOCSs. Most of the metabolism-related pathways were activated in MOCS2. Several immune microenvironmental cells were highly infiltrated in specific MOCS subtype. MOCS3 showed a significantly lower tumor mutation burden. The CNV occurrence frequency was higher in MOCS1. As for treatment, we found that these MOCSs were sensitive to different drugs and treatments. We also analyzed single-cell data for KIRP. Conclusion Based on a variety of algorithms, this study determined the risk classifier based on multi-omics data, which could guide the risk stratification and medication selection of patients with KIRP.
Collapse
Affiliation(s)
- Baodong Wang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Mei Li
- Department of Laboratory Medicine, Shanxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
- *Correspondence: Rongshan Li,
| |
Collapse
|