1
|
Meurers T, Otte K, Abu Attieh H, Briki F, Despraz J, Halilovic M, Kaabachi B, Milicevic V, Müller A, Papapostolou G, Wirth FN, Raisaro JL, Prasser F. A quantitative analysis of the use of anonymization in biomedical research. NPJ Digit Med 2025; 8:279. [PMID: 40369095 PMCID: PMC12078711 DOI: 10.1038/s41746-025-01644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Anonymized biomedical data sharing faces several challenges. This systematic review analyzes 1084 PubMed-indexed studies (2018-2022) using anonymized biomedical data to quantify usage trends across geographic, regulatory, and cultural regions to identify effective approaches and inform implementation agendas. We identified a significant yearly increase in such studies with a slope of 2.16 articles per 100,000 when normalized against the total number of PubMed-indexed articles (p = 0.021). Most studies used data from the US, UK, and Australia (78.2%). This trend remained when normalized by country-specific research output. Cross-border sharing was rare (10.5% of studies). We identified twelve common data sources, primarily in the US (seven) and UK (three), including commercial (seven) and public entities (five). The prevalence of anonymization in the US, UK, and Australia suggests their practices could guide broader adoption. Rare cross-border anonymized data sharing and differences between countries with comparable regulations underscore the need for global standards.
Collapse
Affiliation(s)
- Thierry Meurers
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Karen Otte
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hammam Abu Attieh
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Farah Briki
- Biomedical Data Science Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jérémie Despraz
- Biomedical Data Science Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mehmed Halilovic
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bayrem Kaabachi
- Biomedical Data Science Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Vladimir Milicevic
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Armin Müller
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Grigorios Papapostolou
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Nikolaus Wirth
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Louis Raisaro
- Biomedical Data Science Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Fabian Prasser
- Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Forjaz G, Kohler B, Coleman MP, Steliarova-Foucher E, Negoita S, Guidry Auvil JM, Michels FS, Goderre J, Wiggins C, Durbin EB, Geleijnse G, Henrion MC, Altmayer C, Dubois T, Penberthy L. Making the Case for an International Childhood Cancer Data Partnership. J Natl Cancer Inst 2025:djaf003. [PMID: 39799506 DOI: 10.1093/jnci/djaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Childhood cancers are a heterogeneous group of rare diseases, accounting for less than 2% of all cancers diagnosed worldwide. Most countries, therefore, do not have enough cases to provide robust information on epidemiology, treatment, and late effects, especially for rarer types of cancer. Thus, only through a concerted effort to share data internationally will we be able to answer research questions that could not otherwise be answered. With this goal in mind, the U.S. National Cancer Institute and the French National Cancer Institute co-sponsored the Paris Conference for an International Childhood Cancer Data Partnership in November 2023. This meeting convened more than 200 participants from 17 countries to address complex challenges in pediatric cancer research and data sharing. This Commentary delves into some key topics discussed during the Paris Conference and describes pilots that will help move this international effort forward. Main topics presented include: 1) the wide variation in interpreting the European Union's General Data Protection Regulation among Member States; 2) obstacles with transferring personal health data outside of the European Union; 3) standardization and harmonization, including common data models; and 4) novel approaches to data sharing such as federated querying and federated learning. We finally provide a brief description of three ongoing pilot projects. The International Childhood Cancer Data Partnership is the first step in developing a process to better support pediatric cancer research internationally through combining data from multiple countries.
Collapse
Affiliation(s)
- Gonçalo Forjaz
- Public Health Practice, Westat, Inc, ., Rockville, MD, USA
| | - Betsy Kohler
- North American Association of Central Cancer Registries, Springfield, IL, USA
| | - Michel P Coleman
- London School of Hygiene & Tropical Medicine, Cancer Survival Group, UK, London
| | | | - Serban Negoita
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Jaime M Guidry Auvil
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD, USA
| | | | - Johanna Goderre
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Charles Wiggins
- New Mexico Tumor Registry, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Eric B Durbin
- Kentucky Cancer Registry, Markey Cancer Center, Lexington, KY, USA
| | - Gijs Geleijnse
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | | | | | | | - Lynne Penberthy
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
3
|
Brauneck A, Schmalhorst L, Weiss S, Baumbach L, Völker U, Ellinghaus D, Baumbach J, Buchholtz G. Legal aspects of privacy-enhancing technologies in genome-wide association studies and their impact on performance and feasibility. Genome Biol 2024; 25:154. [PMID: 38872191 PMCID: PMC11170858 DOI: 10.1186/s13059-024-03296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Genomic data holds huge potential for medical progress but requires strict safety measures due to its sensitive nature to comply with data protection laws. This conflict is especially pronounced in genome-wide association studies (GWAS) which rely on vast amounts of genomic data to improve medical diagnoses. To ensure both their benefits and sufficient data security, we propose a federated approach in combination with privacy-enhancing technologies utilising the findings from a systematic review on federated learning and legal regulations in general and applying these to GWAS.
Collapse
Affiliation(s)
- Alissa Brauneck
- Hamburg University Faculty of Law, University of Hamburg, Hamburg, Germany.
| | - Louisa Schmalhorst
- Hamburg University Faculty of Law, University of Hamburg, Hamburg, Germany
| | - Stefan Weiss
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Linda Baumbach
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Gabriele Buchholtz
- Hamburg University Faculty of Law, University of Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Naik K, Goyal RK, Foschini L, Chak CW, Thielscher C, Zhu H, Lu J, Lehár J, Pacanoswki MA, Terranova N, Mehta N, Korsbo N, Fakhouri T, Liu Q, Gobburu J. Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine. Clin Pharmacol Ther 2024; 115:673-686. [PMID: 38103204 DOI: 10.1002/cpt.3152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Technological innovations, such as artificial intelligence (AI) and machine learning (ML), have the potential to expedite the goal of precision medicine, especially when combined with increased capacity for voluminous data from multiple sources and expanded therapeutic modalities; however, they also present several challenges. In this communication, we first discuss the goals of precision medicine, and contextualize the use of AI in precision medicine by showcasing innovative applications (e.g., prediction of tumor growth and overall survival, biomarker identification using biomedical images, and identification of patient population for clinical practice) which were presented during the February 2023 virtual public workshop entitled "Application of Artificial Intelligence and Machine Learning for Precision Medicine," hosted by the US Food and Drug Administration (FDA) and University of Maryland Center of Excellence in Regulatory Science and Innovation (M-CERSI). Next, we put forward challenges brought about by the multidisciplinary nature of AI, particularly highlighting the need for AI to be trustworthy. To address such challenges, we subsequently note practical approaches, viz., differential privacy, synthetic data generation, and federated learning. The proposed strategies - some of which are highlighted presentations from the workshop - are for the protection of personal information and intellectual property. In addition, methods such as the risk-based management approach and the need for an agile regulatory ecosystem are discussed. Finally, we lay out a call for action that includes sharing of data and algorithms, development of regulatory guidance documents, and pooling of expertise from a broad-spectrum of stakeholders to enhance the application of AI in precision medicine.
Collapse
Affiliation(s)
- Kunal Naik
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rahul K Goyal
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | | | | | | - Hao Zhu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - James Lu
- Modeling & Simulation/Clinical Pharmacology, Genentech Inc., South San Francisco, California, USA
| | | | - Michael A Pacanoswki
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nadia Terranova
- Quantitative Pharmacology, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | - Neha Mehta
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Tala Fakhouri
- Office of Medical Policy, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Qi Liu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jogarao Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Mudumbai SC, Gabriel RA, Howell S, Tan JM, Freundlich RE, O’Reilly Shah V, Kendale S, Poterack K, Rothman BS. Public Health Informatics and the Perioperative Physician: Looking to the Future. Anesth Analg 2024; 138:253-272. [PMID: 38215706 PMCID: PMC10825795 DOI: 10.1213/ane.0000000000006649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The role of informatics in public health has increased over the past few decades, and the coronavirus disease 2019 (COVID-19) pandemic has underscored the critical importance of aggregated, multicenter, high-quality, near-real-time data to inform decision-making by physicians, hospital systems, and governments. Given the impact of the pandemic on perioperative and critical care services (eg, elective procedure delays; information sharing related to interventions in critically ill patients; regional bed-management under crisis conditions), anesthesiologists must recognize and advocate for improved informatic frameworks in their local environments. Most anesthesiologists receive little formal training in public health informatics (PHI) during clinical residency or through continuing medical education. The COVID-19 pandemic demonstrated that this knowledge gap represents a missed opportunity for our specialty to participate in informatics-related, public health-oriented clinical care and policy decision-making. This article briefly outlines the background of PHI, its relevance to perioperative care, and conceives intersections with PHI that could evolve over the next quarter century.
Collapse
Affiliation(s)
- Seshadri C. Mudumbai
- Anesthesiology and Perioperative Care Service, Veterans Affairs Palo Alto Health Care System
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine
| | - Rodney A. Gabriel
- Department of Anesthesiology, University of California, San Diego, California
| | | | - Jonathan M. Tan
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles
- Department of Anesthesiology, Keck School of Medicine at the University of Southern California
- Spatial Sciences Institute at the University of Southern California
| | - Robert E. Freundlich
- Department of Anesthesiology, Surgery, and Biomedical Informatics, Vanderbilt University Medical Center
| | | | - Samir Kendale
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center
| | - Karl Poterack
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic
| | - Brian S. Rothman
- Department of Anesthesiology, Surgery, and Biomedical Informatics, Vanderbilt University Medical Center
| |
Collapse
|
6
|
Olawade DB, Wada OJ, David-Olawade AC, Kunonga E, Abaire O, Ling J. Using artificial intelligence to improve public health: a narrative review. Front Public Health 2023; 11:1196397. [PMID: 37954052 PMCID: PMC10637620 DOI: 10.3389/fpubh.2023.1196397] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Artificial intelligence (AI) is a rapidly evolving tool revolutionizing many aspects of healthcare. AI has been predominantly employed in medicine and healthcare administration. However, in public health, the widespread employment of AI only began recently, with the advent of COVID-19. This review examines the advances of AI in public health and the potential challenges that lie ahead. Some of the ways AI has aided public health delivery are via spatial modeling, risk prediction, misinformation control, public health surveillance, disease forecasting, pandemic/epidemic modeling, and health diagnosis. However, the implementation of AI in public health is not universal due to factors including limited infrastructure, lack of technical understanding, data paucity, and ethical/privacy issues.
Collapse
Affiliation(s)
- David B. Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Ojima J. Wada
- Division of Sustainable Development, Qatar Foundation, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Edward Kunonga
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Olawale Abaire
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Jonathan Ling
- Independent Researcher, Stockton-on-Tees, United Kingdom
| |
Collapse
|
7
|
Alloza C, Knox B, Raad H, Aguilà M, Coakley C, Mohrova Z, Boin É, Bénard M, Davies J, Jacquot E, Lecomte C, Fabre A, Batech M. A Case for Synthetic Data in Regulatory Decision-Making in Europe. Clin Pharmacol Ther 2023; 114:795-801. [PMID: 37441734 DOI: 10.1002/cpt.3001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Regulators are faced with many challenges surrounding health data usage, including privacy, fragmentation, validity, and generalizability, especially in the European Union, for which synthetic data may provide innovative solutions. Synthetic data, defined as data artificially generated rather than captured in the real world, are increasingly being used for healthcare research purposes as a proxy to real-world data (RWD). Currently, there are barriers particularly challenging in Europe, where sharing patient's data is strictly regulated, costly, and time-consuming, causing delays in evidence generation and regulatory approvals. Recent initiatives are encouraging the use of synthetic data in regulatory decision making and health technology assessment to overcome these challenges, but synthetic data have still to overcome realistic obstacles before their adoption by researchers and regulators in Europe. Thus, the emerging use of RWD and synthetic data by pharmaceutical and medical device industries calls regulatory bodies to provide a framework for proper evidence generation and informed regulatory decision making. As the provision of data becomes more ubiquitous in scientific research, so will innovations in artificial intelligence, machine learning, and generation of synthetic data, making the exploration and intricacies of this topic all the more important and timely. In this review, we discuss the potential merits and challenges of synthetic data in the context of decision making in the European regulatory environment. We explore the current uses of synthetic data and ongoing initiatives, the value of synthetic data for regulatory purposes, and realistic barriers to the adoption of synthetic data in healthcare.
Collapse
|
8
|
Ganguli R, Lad R, Lin A, Yu X. Novel Generative Recurrent Neural Network Framework to Produce Accurate, Applicable, and Deidentified Synthetic Medical Data for Patients With Metastatic Cancer. JCO Clin Cancer Inform 2023; 7:e2200125. [PMID: 37130342 DOI: 10.1200/cci.22.00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
PURPOSE Sensitive patient data cannot be easily shared/analyzed, severely limiting the innovative progress of research, specifically for marginalized/under-represented populations. Existing methods of deidentification are subject to data breaches. The objective of this study was to develop a neural network capable of generating a synthetic version of data for patients with novel postoperative metastatic cancer. METHODS We analyzed a metastatic cancer patient cohort of 167,474 patients obtained from the National Surgical Quality Improvement Program. Twenty-seven clinical features were analyzed. We created a volume-matched synthetic cohort of 167,474 patients and a reduced-size synthetic cohort of 5,000 patients. The volume-matched and reduced-size synthetic cohorts were compared against the ground truth data to analyze differences in principal component distribution, underlying statistical properties/associations, intervariable correlations, and machine learning classifier performance when developed on the synthetic data. RESULTS Among 167,474 patients with metastatic cancer in the original data, 50,669 (30.3%) died within 30 days of their index surgery. Our model was able to accurately capture underlying statistical properties, principal components, and intervariable correlations within the ground truth data, yielding an accuracy of 93.2% with a loss of 0.21%, and develop synthetic data capable of training accurate machine learning classifiers. The reduced-size synthetic data accurately replicated all categorical variables and every continuous variable with statistically similar records (P > .05), with the sole exception of preoperative albumin (P < .05). The volume-matched synthetic data frame was able to accurately replicate all categorical variables (P > .05). CONCLUSION This described methodology can be applied to any structured medical data from any setting, significantly expedite scientific analysis/innovation, and be used to develop improved predictive classifiers with boosted tree-based algorithms, serving as the potential new gold standard of medical data sharing and data augmentation.
Collapse
Affiliation(s)
- Reetam Ganguli
- Brown University, Providence, RI
- Dartmouth College, Hanover, NH
| | - Rishik Lad
- Warren Alpert Medical School of Brown University, Providence, RI
| | | | | |
Collapse
|
9
|
Hendricks-Sturrup R, Lu CY. An Assessment of Perspectives and Concerns Among Research Participants of Childbearing Age Regarding the Health-Relatedness of Data, Online Data Privacy, and Donating Data to Researchers: Survey Study. J Med Internet Res 2023; 25:e41937. [PMID: 36897637 PMCID: PMC10039398 DOI: 10.2196/41937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/26/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The June 2022 US Supreme Court decision to ban abortion care in Dobbs v Jackson Women's Health Organization sparked ominous debate about the privacy and safety of women and families of childbearing age with digital footprints who actively engage in family planning, including abortion and miscarriage care. OBJECTIVE To assess the perspectives of a subpopulation of research participants of childbearing age regarding the health-relatedness of their digital data, their concerns about the use and sharing of personal data online, and their concerns about donating data from various sources to researchers today or in the future. METHODS An 18-item electronic survey was developed using Qualtrics and administered to adults (aged ≥18 years) registered in the ResearchMatch database in April 2021. Individuals were invited to participate in the survey regardless of health status, race, gender, or any other mutable or immutable characteristics. Descriptive statistical analyses were conducted using Microsoft Excel and manual queries (single layer, bottom-up topic modeling) and used to categorize illuminating quotes from free-text survey responses. RESULTS A total of 470 participants initiated the survey and 402 completed and submitted the survey (for an 86% completion rate). Nearly half the participants (189/402, 47%) self-reported to be persons of childbearing age (18 to 50 years). Most participants of childbearing age agreed or strongly agreed that social media data, email data, text message data, Google search history data, online purchase history data, electronic medical record data, fitness tracker and wearable data, credit card statement data, and genetic data are health-related. Most participants disagreed or strongly disagreed that music streaming data, Yelp review and rating data, ride-sharing history data, tax records and other income history data, voting history data, and geolocation data are health-related. Most (164/189, 87%) participants were concerned about fraud or abuse based on their personal information, online companies and websites sharing information with other parties without consent, and online companies and websites using information for purposes that are not explicitly stated in their privacy policies. Free-text survey responses showed that participants were concerned about data use beyond scope of consent; exclusion from health care and insurance; government and corporate mistrust; and data confidentiality, security, and discretion. CONCLUSIONS Our findings in light of Dobbs and other related events indicate there are opportunities to educate research participants about the health-relatedness of their digital data. Developing strategies and best privacy practices for discretion regarding digital-footprint data related to family planning should be a priority for companies, researchers, families, and other stakeholders.
Collapse
Affiliation(s)
- Rachele Hendricks-Sturrup
- Duke-Margolis Center for Health Policy, Washington, DC, United States
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, United States
- Department of Interdisciplinary Health Studies, Ohio University, Athens, GA, United States
| | - Christine Y Lu
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Mijanur Rahman M, Khatun F. Challenges and Prospective of AI and 5G-Enabled Technologies in Emerging Applications during the Pandemic. ARTIF INTELL 2023. [DOI: 10.5772/intechopen.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
5G is being implemented in the Internet of things (IoT) era. This book chapter focuses on 5G technology and the integration of other digital technologies, such as artificial intelligence (AI) and machine learning, IoT, big data analytics, cloud computing, robotics, and other digital platforms into new healthcare applications. Now, the healthcare industry is implementing 5G-enabled technology to improve health services, medical research, quality of life, and medical professionals’ and patients’ experiences everywhere, at any time. Technology can facilitate faster medical research progress and better clinical and social services management. Furthermore, AI approaches with 5G connectivity may be able to combat the epidemic challenges with minimal resources. This book chapter underlines how 5G technology is growing to address epidemic concerns. The study highlights many technical issues and future developments for creating 5G-powered healthcare solutions. This chapter also addresses the key challenges AI and 5G technology face in emerging healthcare solutions. In addition, this book chapter highlights perspective, policy recommendations, and future research directions of AI and 5G-enabled technologies in confronting future pandemics. More research will be incorporated into future projects, including studies on developing a digital society based on 5G technology in healthcare emergencies.
Collapse
|