1
|
Guan Q, Zhang Y, Wang ZK, Liu XH, Zou J, Zhang LL. Skeletal phenotypes and molecular mechanisms in aging mice. Zool Res 2024; 45:724-746. [PMID: 38894518 PMCID: PMC11298674 DOI: 10.24272/j.issn.2095-8137.2023.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
Aging is an inevitable physiological process, often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks. Research on skeletal diseases caused by aging in humans is challenging due to lengthy study durations, difficulties in sampling, regional variability, and substantial investment. Consequently, mice are preferred for such studies due to their similar motor system structure and function to humans, ease of handling and care, low cost, and short generation time. In this review, we present a comprehensive overview of the characteristics, limitations, applicability, bone phenotypes, and treatment methods in naturally aging mice and prematurely aging mouse models (including SAMP6, POLG mutant, LMNA, SIRT6, ZMPSTE24, TFAM, ERCC1, WERNER, and KL/KL-deficient mice). We also summarize the molecular mechanisms of these aging mouse models, including cellular DNA damage response, senescence-related secretory phenotype, telomere shortening, oxidative stress, bone marrow mesenchymal stem cell (BMSC) abnormalities, and mitochondrial dysfunction. Overall, this review aims to enhance our understanding of the pathogenesis of aging-related bone diseases.
Collapse
Affiliation(s)
- Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yuan Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Zhi-Kun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Hua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ling-Li Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China. E-mail:
| |
Collapse
|
2
|
He Y, Yang W, Huang L, Mever MA, Ramautar R, Harms A, Rijksen Y, Brandt RM, Barnhoorn S, Smit K, Jaarsma D, Lindenburg P, Hoeijmakers JHJ, Vermeij WP, Hankemeier T. Metabolomic analysis of dietary-restriction-induced attenuation of sarcopenia in prematurely aging DNA repair-deficient mice. J Cachexia Sarcopenia Muscle 2024; 15:868-882. [PMID: 38689513 PMCID: PMC11154776 DOI: 10.1002/jcsm.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by loss of skeletal muscle mass and function, and is a major risk factor for disability and independence in the elderly. Effective medication is not available. Dietary restriction (DR) has been found to attenuate aging and aging-related diseases, including sarcopenia, but the mechanism of both DR and sarcopenia are incompletely understood. METHODS In this study, mice body weight, fore and all limb grip strength, and motor learning and coordination performance were first analysed to evaluate the DR effects on muscle functioning. Liquid chromatography-mass spectrometry (LC-MS) was utilized for the metabolomics study of the DR effects on sarcopenia in progeroid DNA repair-deficient Ercc1∆/- and Xpg-/- mice, to identify potential biomarkers for attenuation of sarcopenia. RESULTS Muscle mass was significantly (P < 0.05) decreased (13-20%) by DR; however, the muscle quality was improved with retained fore limbs and all limbs grip strength in Ercc1∆/- and Xpg-/- mice. The LC-MS results revealed that metabolites and pathways related to oxidative-stress, that is, GSSG/GSH (P < 0.01); inflammation, that is, 9-HODE, 11-HETE (P < 0.05), PGE2, PGD2, and TXB2 (P < 0.01); and muscle growth (PGF2α) (P < 0.01) and regeneration stimulation (PGE2) (P < 0.05) are significantly downregulated by DR. On the other hand, anti-inflammatory indicator and several related metabolites, that is, β-hydroxybutyrate (P < 0.01), 14,15-DiHETE (P < 0.0001), 8,9-EET, 12,13-DiHODE, and PGF1 (P < 0.05); consumption of sources of energy (i.e., muscle and liver glycogen); and energy production pathways, that is, glycolysis (glucose, glucose-6-P, fructose-6-P) (P < 0.01), tricarboxylic acid cycle (succinyl-CoA, malate) (P < 0.001), and gluconeogenesis-related metabolite, alanine (P < 0.01), are significantly upregulated by DR. The notably (P < 0.01) down-modulated muscle growth (PGF2α) and regeneration (PGE2) stimulation metabolite and the increased consumption of glycogen in muscle and liver may be related to the significantly (P < 0.01) lower body weight and muscle mass by DR. The downregulated oxidative stress, pro-inflammatory mediators, and upregulated anti-inflammatory metabolites resulted in a lower energy expenditure, which contributed to enhanced muscle quality together with upregulated energy production pathways by DR. The improved muscle quality may explain why grip strength is maintained and motor coordination and learning performance are improved by DR in Ercc1∆/- and Xpg-/- mice. CONCLUSIONS This study provides fundamental supporting information on biomarkers and pathways related to the attenuation of sarcopenia, which might facilitate its diagnosis, prevention, and clinical therapy.
Collapse
Affiliation(s)
- Yupeng He
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Wei Yang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Luojiao Huang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Marlien Admiraal‐van Mever
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Yvonne Rijksen
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Renata M.C. Brandt
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Kimberly Smit
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Dick Jaarsma
- Department of NeuroscienceErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Peter Lindenburg
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Research Group Metabolomics, Leiden Center for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamThe Netherlands
- Institute for Genome Stability in Aging and Disease, Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
3
|
Jaarsma D, Birkisdóttir MB, van Vossen R, Oomen DWGD, Akhiyat O, Vermeij WP, Koekkoek SKE, De Zeeuw CI, Bosman LWJ. Different Purkinje cell pathologies cause specific patterns of progressive gait ataxia in mice. Neurobiol Dis 2024; 192:106422. [PMID: 38286390 DOI: 10.1016/j.nbd.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| | - Maria B Birkisdóttir
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Randy van Vossen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Demi W G D Oomen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Oussama Akhiyat
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands; Oncode Institute, 3521 AL, Utrecht, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
5
|
Biţă A, Scorei IR, Ciocîlteu MV, Nicolaescu OE, Pîrvu AS, Bejenaru LE, Rău G, Bejenaru C, Radu A, Neamţu J, Mogoşanu GD, Benner SA. Nicotinamide Riboside, a Promising Vitamin B 3 Derivative for Healthy Aging and Longevity: Current Research and Perspectives. Molecules 2023; 28:6078. [PMID: 37630330 PMCID: PMC10459282 DOI: 10.3390/molecules28166078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Many studies have suggested that the oxidized form of nicotinamide adenine dinucleotide (NAD+) is involved in an extensive spectrum of human pathologies, including neurodegenerative disorders, cardiomyopathy, obesity, and diabetes. Further, healthy aging and longevity appear to be closely related to NAD+ and its related metabolites, including nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). As a dietary supplement, NR appears to be well tolerated, having better pharmacodynamics and greater potency. Unfortunately, NR is a reactive molecule, often unstable during its manufacturing, transport, and storage. Recently, work related to prebiotic chemistry discovered that NR borate is considerably more stable than NR itself. However, immediately upon consumption, the borate dissociates from the NR borate and is lost in the body through dilution and binding to other species, notably carbohydrates such as fructose and glucose. The NR left behind is expected to behave pharmacologically in ways identical to NR itself. This review provides a comprehensive summary (through Q1 of 2023) of the literature that makes the case for the consumption of NR as a dietary supplement. It then summarizes the challenges of delivering quality NR to consumers using standard synthesis, manufacture, shipping, and storage approaches. It concludes by outlining the advantages of NR borate in these processes.
Collapse
Affiliation(s)
- Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Oana Elena Nicolaescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Avenue, Room N112, Alachua, FL 32615, USA;
| |
Collapse
|
6
|
Birkisdóttir MB, Van’t Sant LJ, Brandt RMC, Barnhoorn S, Hoeijmakers JHJ, Vermeij WP, Jaarsma D. Purkinje-cell-specific DNA repair-deficient mice reveal that dietary restriction protects neurons by cell-intrinsic preservation of genomic health. Front Aging Neurosci 2023; 14:1095801. [PMID: 36760711 PMCID: PMC9902592 DOI: 10.3389/fnagi.2022.1095801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Dietary restriction (DR) is a universal anti-aging intervention, which reduces age-related nervous system pathologies and neurological decline. The degree to which the neuroprotective effect of DR operates by attenuating cell intrinsic degradative processes rather than influencing non-cell autonomous factors such as glial and vascular health or systemic inflammatory status is incompletely understood. Following up on our finding that DR has a remarkably large beneficial effect on nervous system pathology in whole-body DNA repair-deficient progeroid mice, we show here that DR also exerts strong neuroprotection in mouse models in which a single neuronal cell type, i.e., cerebellar Purkinje cells, experience genotoxic stress and consequent premature aging-like dysfunction. Purkinje cell specific hypomorphic and knock-out ERCC1 mice on DR retained 40 and 25% more neurons, respectively, with equal protection against P53 activation, and alike results from whole-body ERCC1-deficient mice. Our findings show that DR strongly reduces Purkinje cell death in our Purkinje cell-specific accelerated aging mouse model, indicating that DR protects Purkinje cells from intrinsic DNA-damage-driven neurodegeneration.
Collapse
Affiliation(s)
- María Björk Birkisdóttir
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands,Oncode Institute, Utrecht, Netherlands
| | | | - Renata M. C. Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands,Oncode Institute, Utrecht, Netherlands,Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands,Faculty of Medicine, CECAD, Institute for Genome Stability in Aging and Disease, University of Cologne, Cologne, Germany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands,Oncode Institute, Utrecht, Netherlands,*Correspondence: Wilbert P. Vermeij, ✉
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands,Dick Jaarsma, ✉
| |
Collapse
|