1
|
Gu Q, Sun H, Liu P, Hu X, Yang J, Chen Y, Xing Y. Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study. Radiother Oncol 2025; 205:110770. [PMID: 39894259 DOI: 10.1016/j.radonc.2025.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS A total of 469 PDAC patients from four hospitals were divided into training and test sets. Handcrafted radiomics and deep learning (DL) features were extracted from optimal regions of interest, encompassing both intratumoral and peritumoral areas. Univariate Cox regression, LASSO regression, and multivariate Cox regression selected features for three image signatures (intratumoral, peritumoral radiomics, and DL). A multiscale nomogram was constructed and validated against the 8th AJCC staging system. RESULTS The 4 mm peritumoral VOI yielded the best radiomics prediction, while a 15 mm expansion was optimal for deep learning. The multiscale nomogram demonstrated a C-index of 0.82 (95 % CI: 0.78-0.85) in the training set and 0.70 (95 % CI: 0.64-0.76) in the external test 1 (high-volume hospital), with the external test 2 (low-volume hospital) showing a C-index of 0.78 (95 % CI: 0.65-0.91). These outperformed the AJCC system's C-index (0.54-0.57). The area under the curve (AUC) for recurrence prediction at 0.5, 1, and 2 years was 0.89, 0.94, and 0.89 in the training set, with AUC values ranging from 0.75 to 0.97 in the external validation sets, consistently surpassing the AJCC system across all sets. Kaplan-Meier analysis confirmed significant differences in prognosis between high- and low-risk groups (P < 0.01 across all cohorts). CONCLUSION The multiscale nomogram effectively stratifies recurrence risk in PDAC patients, enhancing presurgical clinical decision-making and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Qianbiao Gu
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, 830011 Wulumuqi, China
| | - Huiling Sun
- Department of CT and MR, Traditional Chinese Medicine Hospital of Changji Hui Autonomous Prefecture, 831100 Changji Hui Autonomous Prefecture, China
| | - Peng Liu
- Department of Radiology, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, 410000 Changsha, China
| | - Xiaoli Hu
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, 410000 Changsha, China
| | - Jiankang Yang
- Department of Radiology, Yueyang Central Hospital, 414000 Yueyang, China
| | - Yong Chen
- Department of Radiology, First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, 412000 Zhuzhou, China
| | - Yan Xing
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, 830011 Wulumuqi, China.
| |
Collapse
|
2
|
Le VH, Minh TNT, Kha QH, Le NQK. Deep Learning Radiomics for Survival Prediction in Non-Small-Cell Lung Cancer Patients from CT Images. J Med Syst 2025; 49:22. [PMID: 39930275 DOI: 10.1007/s10916-025-02156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 05/08/2025]
Abstract
This study aims to apply a multi-modal approach of the deep learning method for survival prediction in patients with non-small-cell lung cancer (NSCLC) using CT-based radiomics. We utilized two public data sets from the Cancer Imaging Archive (TCIA) comprising NSCLC patients, 420 patients and 516 patients for Lung 1 training and Lung 2 testing, respectively. A 3D convolutional neural network (CNN) survival was applied to extract 256 deep-radiomics features for each patient from a CT scan. Feature selection steps are used to choose the radiomics signatures highly associated with overall survival. Deep-radiomics and traditional-radiomics signatures, and clinical parameters were fed into the DeepSurv neural network. The C-index was used to evaluate the model's effectiveness. In the Lung 1 training set, the model combining traditional-radiomics and deep-radiomics performs better than the single parameter models, and models that combine all three markers (traditional-radiomics, deep-radiomics, and clinical) are most effective with C-index 0.641 for Cox proportional hazards (Cox-PH) and 0.733 for DeepSurv approach. In the Lung 2 testing set, the model combining traditional-radiomics, deep-radiomics, and clinical obtained a C-index of 0.746 for Cox-PH and 0.751 for DeepSurv approach. The DeepSurv method improves the model's prediction compared to the Cox-PH, and models that combine all three parameters with the DeepSurv have the highest efficiency in training and testing data sets (C-index: 0.733 and 0.751, respectively). DeepSurv CT-based deep-radiomics method outperformed Cox-PH in survival prediction of patients with NSCLC patients. Models' efficiency is increased when combining multi parameters.
Collapse
Affiliation(s)
- Viet Huan Le
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City, 65000, Vietnam
| | - Tran Nguyen Tuan Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan
| | - Quang Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan
| | - Nguyen Quoc Khanh Le
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan.
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Saleh M, Virarkar M, Mahmoud HS, Wong VK, Gonzalez Baerga CI, Parikh M, Elsherif SB, Bhosale PR. Radiomics analysis with three-dimensional and two-dimensional segmentation to predict survival outcomes in pancreatic cancer. World J Radiol 2023; 15:304-314. [PMID: 38058604 PMCID: PMC10696186 DOI: 10.4329/wjr.v15.i11.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Radiomics can assess prognostic factors in several types of tumors, but considering its prognostic ability in pancreatic cancer has been lacking. AIM To evaluate the performance of two different radiomics software in assessing survival outcomes in pancreatic cancer patients. METHODS We retrospectively reviewed pretreatment contrast-enhanced dual-energy computed tomography images from 48 patients with biopsy-confirmed pancreatic ductal adenocarcinoma who later underwent neoadjuvant chemoradiation and surgery. Tumors were segmented using TexRad software for 2-dimensional (2D) analysis and MIM software for 3D analysis, followed by radiomic feature extraction. Cox proportional hazard modeling correlated texture features with overall survival (OS) and progression-free survival (PFS). Cox regression was used to detect differences in OS related to pretreatment tumor size and residual tumor following treatment. The Wilcoxon test was used to show the relationship between tumor volume and the percent of residual tumor. Kaplan-Meier analysis was used to compare survival in patients with different tumor densities in Hounsfield units for both 2D and 3D analysis. RESULTS 3D analysis showed that higher mean tumor density [hazard ratio (HR) = 0.971, P = 0.041)] and higher median tumor density (HR = 0.970, P = 0.037) correlated with better OS. 2D analysis showed that higher mean tumor density (HR = 0.963, P = 0.014) and higher mean positive pixels (HR = 0.962, P = 0.014) correlated with better OS; higher skewness (HR = 3.067, P = 0.008) and higher kurtosis (HR = 1.176, P = 0.029) correlated with worse OS. Higher entropy correlated with better PFS (HR = 0.056, P = 0.036). Models determined that patients with increased tumor size greater than 1.35 cm were likely to have a higher percentage of residual tumors of over 10%. CONCLUSION Several radiomics features can be used as prognostic tools for pancreatic cancer. However, results vary between 2D and 3D analyses. Mean tumor density was the only variable that could reliably predict OS, irrespective of the analysis used.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mayur Virarkar
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Hagar S Mahmoud
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Vincenzo K Wong
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Carlos Ignacio Gonzalez Baerga
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Miti Parikh
- Keck School of Medicine, University of South California, Los Angeles, CA 90033, United States
| | - Sherif B Elsherif
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Priya R Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
4
|
Wahab N, Toss M, Miligy IM, Jahanifar M, Atallah NM, Lu W, Graham S, Bilal M, Bhalerao A, Lashen AG, Makhlouf S, Ibrahim AY, Snead D, Minhas F, Raza SEA, Rakha E, Rajpoot N. AI-enabled routine H&E image based prognostic marker for early-stage luminal breast cancer. NPJ Precis Oncol 2023; 7:122. [PMID: 37968376 PMCID: PMC10651910 DOI: 10.1038/s41698-023-00472-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) grade is a well-established subjective prognostic indicator of tumour aggressiveness. Tumour heterogeneity and subjective assessment result in high degree of variability among observers in BC grading. Here we propose an objective Haematoxylin & Eosin (H&E) image-based prognostic marker for early-stage luminal/Her2-negative BReAst CancEr that we term as the BRACE marker. The proposed BRACE marker is derived from AI based assessment of heterogeneity in BC at a detailed level using the power of deep learning. The prognostic ability of the marker is validated in two well-annotated cohorts (Cohort-A/Nottingham: n = 2122 and Cohort-B/Coventry: n = 311) on early-stage luminal/HER2-negative BC patients treated with endocrine therapy and with long-term follow-up. The BRACE marker is able to stratify patients for both distant metastasis free survival (p = 0.001, C-index: 0.73) and BC specific survival (p < 0.0001, C-index: 0.84) showing comparable prediction accuracy to Nottingham Prognostic Index and Magee scores, which are both derived from manual histopathological assessment, to identify luminal BC patients that may be likely to benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Michael Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Islam M Miligy
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Koum, Egypt
| | - Mostafa Jahanifar
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Nehal M Atallah
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Koum, Egypt
| | - Wenqi Lu
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Simon Graham
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
- Histofy Ltd, Birmingham, UK
| | - Mohsin Bilal
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Abhir Bhalerao
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Ayat G Lashen
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Koum, Egypt
| | - Shorouk Makhlouf
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Asmaa Y Ibrahim
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - David Snead
- Histofy Ltd, Birmingham, UK
- The Alan Turing Institute, London, UK
| | - Fayyaz Minhas
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Shan E Ahmed Raza
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nasir Rajpoot
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK.
- Histofy Ltd, Birmingham, UK.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
5
|
Li J, Yin W, Wang Y. CT classification model of pancreatic serous cystic neoplasm and mucinous cystic neoplasm based on deep transfer learning. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:167-180. [PMID: 36404568 DOI: 10.3233/xst-221281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease. The preoperative distinction between pancreatic serous cystic neoplasm (SCN) and mucinous cystic neoplasm (MCN) remains a clinical challenge. OBJECTIVE The goal of this study is to provide clinicians with supportive advice and avoid overtreatment by constructing a convolutional neural network (CNN) classifier to automatically identify pancreatic cancer using computed tomography (CT) images. METHODS We construct a CNN model using a dataset of 6,173 CT images obtained from 107 pathologically confirmed pancreatic cancer patients at Shanghai Changhai Hospital from January 2017 to February 2022. We divide CT slices into three categories namely, SCN, MCN, and no tumor, to train the DenseNet201-based CNN model with multi-head spatial attention mechanism (MSAM-DenseNet201). The attention module enhances the network's attention to local features and effectively improves the network performance. The trained model is applied to process all CT image slices and finally realize the two categories classification of MCN and SCN patients through a joint voting strategy. RESULTS Using a 10-fold cross validation method, this new MSAM-DenseNet201 model achieves a classification accuracy of 92.52%, a precision of 92.16%, a sensitivity of 92.16%, and a specificity of 92.86%, respectively. CONCLUSIONS This study demonstrates the feasibility of using a deep learning network or classification model to help diagnose MCN and SCN cases. This, the new method has great potential for developing new computer-aided diagnosis systems and applying in future clinical practice.
Collapse
Affiliation(s)
- Jin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Yin
- Department of Radiology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Yuanjun Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Bladder Cancer Radiation Oncology of the Future: Prognostic Modelling, Radiomics, and Treatment Planning With Artificial Intelligence. Semin Radiat Oncol 2023; 33:70-75. [PMID: 36517196 DOI: 10.1016/j.semradonc.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Machine learning (ML) and artificial intelligence (AI) have demonstrated potential to improve the care of radiation oncology patients. Here we review recent advances applicable to the care of bladder cancer, with an eye towards studies that may suggest next steps in clinical implementation. Algorithms have been applied to clinical records, pathology, and radiology data to generate accurate predictive models for prognosis and clinical outcomes. AI has also shown increasing utility for auto-contouring and efficient creation of workflows involving multiple treatment plans. As technologies progress towards routine clinical use for bladder cancer patients, we also discuss emerging methods to improve interpretability and reliability of algorithms.
Collapse
|
7
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
8
|
Mukherjee S, Patra A, Khasawneh H, Korfiatis P, Rajamohan N, Suman G, Majumder S, Panda A, Johnson MP, Larson NB, Wright DE, Kline TL, Fletcher JG, Chari ST, Goenka AH. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022; 163:1435-1446.e3. [PMID: 35788343 DOI: 10.1053/j.gastro.2022.06.066] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3-36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study. METHODS Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator-based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale. RESULTS Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97-1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5-100.0), specificity (90.3; 84.3-91.5), F1-score (89.5; 82.3-91.7), area under the curve (AUC) (0.98; 0.94-0.98), and accuracy (92.2%; 86.7-93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46-0.86) was lower than each of the 4 ML models (AUCs: 0.95-0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5). CONCLUSIONS Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.
Collapse
Affiliation(s)
| | - Anurima Patra
- Department of Radiology, Tata Medical Centre, Kolkata, India
| | - Hala Khasawneh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Garima Suman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Shounak Majumder
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Ananya Panda
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Johnson
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Nicholas B Larson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Suresh T Chari
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
9
|
Marti-Bonmati L, Cerdá-Alberich L, Pérez-Girbés A, Díaz Beveridge R, Montalvá Orón E, Pérez Rojas J, Alberich-Bayarri A. Pancreatic cancer, radiomics and artificial intelligence. Br J Radiol 2022; 95:20220072. [PMID: 35687700 PMCID: PMC10996946 DOI: 10.1259/bjr.20220072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) are generally classified into four categories based on contrast-enhanced CT at diagnosis: resectable, borderline resectable, unresectable, and metastatic disease. In the initial grading and staging of PDAC, structured radiological templates are useful but limited, as there is a need to define the aggressiveness and microscopic disease stage of these tumours to ensure adequate treatment allocation. Quantitative imaging analysis allows radiomics and dynamic imaging features to provide information of clinical outcomes, and to construct clinical models based on radiomics signatures or imaging phenotypes. These quantitative features may be used as prognostic and predictive biomarkers in clinical decision-making, enabling personalised management of advanced PDAC. Deep learning and convolutional neural networks also provide high level bioinformatics tools that can help define features associated with a given aspect of PDAC biology and aggressiveness, paving the way to define outcomes based on these features. Thus, the prediction of tumour phenotype, treatment response and patient prognosis may be feasible by using such comprehensive and integrated radiomics models. Despite these promising results, quantitative imaging is not ready for clinical implementation in PDAC. Limitations include the instability of metrics and lack of external validation. Large properly annotated datasets, including relevant semantic features (demographics, blood markers, genomics), image harmonisation, robust radiomics analysis, clinically significant tasks as outputs, comparisons with gold-standards (such as TNM or pretreatment classifications) and fully independent validation cohorts, will be required for the development of trustworthy radiomics and artificial intelligence solutions to predict PDAC aggressiveness in a clinical setting.
Collapse
Affiliation(s)
- Luis Marti-Bonmati
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Department of Radiology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Leonor Cerdá-Alberich
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
| | | | | | - Eva Montalvá Orón
- Department of Surgery, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Judith Pérez Rojas
- Department of Pathology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Angel Alberich-Bayarri
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, Quibim
SL, Valencia,
Spain
| |
Collapse
|
10
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
11
|
Zhang Y, Lobo-Mueller EM, Karanicolas P, Gallinger S, Haider MA, Khalvati F. Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images. Sci Rep 2021; 11:1378. [PMID: 33446870 PMCID: PMC7809062 DOI: 10.1038/s41598-021-80998-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
As an analytic pipeline for quantitative imaging feature extraction and analysis, radiomics has grown rapidly in the past decade. On the other hand, recent advances in deep learning and transfer learning have shown significant potential in the quantitative medical imaging field, raising the research question of whether deep transfer learning features have predictive information in addition to radiomics features. In this study, using CT images from Pancreatic Ductal Adenocarcinoma (PDAC) patients recruited in two independent hospitals, we discovered most transfer learning features have weak linear relationships with radiomics features, suggesting a potential complementary relationship between these two feature sets. We also tested the prognostic performance for overall survival using four feature fusion and reduction methods for combining radiomics and transfer learning features and compared the results with our proposed risk score-based feature fusion method. It was shown that the risk score-based feature fusion method significantly improves the prognosis performance for predicting overall survival in PDAC patients compared to other traditional feature reduction methods used in previous radiomics studies (40% increase in area under ROC curve (AUC) yielding AUC of 0.84).
Collapse
Affiliation(s)
- Yucheng Zhang
- Department of Medical Imaging, University of Toronto, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Edrise M Lobo-Mueller
- Department of Diagnostic Imaging and Department of Oncology, Faculty of Medicine and Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Paul Karanicolas
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Farzad Khalvati
- Department of Medical Imaging, University of Toronto, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Diagnostic Imaging and Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|