1
|
Sanchez‐Tamayo N, Yoder Z, Rothemund P, Ballardini G, Keplinger C, Kuchenbecker KJ. Cutaneous Electrohydraulic (CUTE) Wearable Devices for Pleasant Broad-Bandwidth Haptic Cues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402461. [PMID: 39239783 PMCID: PMC11672320 DOI: 10.1002/advs.202402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Indexed: 09/07/2024]
Abstract
By focusing on vibrations, current wearable haptic devices underutilize the skin's perceptual capabilities. Devices that provide richer haptic stimuli, including contact feedback and/or variable pressure, are typically heavy and bulky due to the underlying actuator technology and the low sensitivity of hairy skin, which covers most of the body. This article presents a system architecture for compact wearable devices that deliver salient and pleasant broad-bandwidth haptic cues: Cutaneous Electrohydraulic (CUTE) devices combine a custom materials design for soft haptic electrohydraulic actuators that feature high stroke, high force, and electrical safety with a comfortable mounting strategy that places the actuator in a non-contact resting position. A prototypical wrist-wearable CUTE device produces rich tactile sensations by making and breaking contact with the skin (2.44 mm actuation stroke), applying high controllable forces (exceeding 2.3 N), and delivering vibrations at a wide range of amplitudes and frequencies (0-200 Hz). A perceptual study with 14 participants achieves 97.9% recognition accuracy across six diverse cues and verifies their pleasant and expressive feel. This system architecture for wearable devices gives unprecedented control over the haptic cues delivered to the skin, providing an elegant and discreet way to activate the user's sense of touch.
Collapse
Affiliation(s)
- Natalia Sanchez‐Tamayo
- Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Zachary Yoder
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Philipp Rothemund
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Institute for Control Engineering of Machine Tools and Manufacturing UnitsUniversity of StuttgartSeidenstraße 3670174StuttgartGermany
| | - Giulia Ballardini
- Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Christoph Keplinger
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Paul M. Rady Department of Mechanical EngineeringUniversity of ColoradoBoulder, 1111 Engineering DriveBoulderCO80309USA
- Materials Science and Engineering ProgramUniversity of ColoradoBoulder, 1111 Engineering DriveBoulderCO80309USA
| | - Katherine J. Kuchenbecker
- Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| |
Collapse
|
2
|
Ranzani R, Razzoli M, Sanson P, Song J, Galati S, Ferrarese C, Lambercy O, Kaelin-Lang A, Gassert R. Feasibility of Adjunct Therapy with a Robotic Hand Orthosis after Botulinum Toxin Injections in Persons with Spasticity: A Pilot Study. Toxins (Basel) 2024; 16:346. [PMID: 39195756 PMCID: PMC11360205 DOI: 10.3390/toxins16080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Upper-limb spasticity, frequent after central nervous system lesions, is typically treated with botulinum neurotoxin type A (BoNT-A) injections to reduce muscle tone and increase range of motion. However, performing adjunct physical therapy post-BoNT-A can be challenging due to residual weakness or spasticity. This study evaluates the feasibility of hand therapy using a robotic hand orthosis (RELab tenoexo) with a mobile phone application as an adjunct to BoNT-A injections. Five chronic spastic patients participated in a two-session pilot study. Functional (Box and Block Test (BBT), Action Research Arm Test (ARAT)), and muscle tone (Modified Ashworth Scale (MAS)) assessments were conducted to assess functional abilities and impairment, along with usability evaluations. In the first session, subjects received BoNT-A injections, and then they performed a simulated unsupervised therapy session with the RELab tenoexo in a second session a month later. Results showed that BoNT-A reduced muscle tone (from 12.2 to 7.4 MAS points). The addition of RELab tenoexo therapy was safe, led to functional improvements in four subjects (two-cube increase in BBT as well as 2.8 points in grasp and 1.3 points in grip on ARAT). Usability results indicate that, with minor improvements, adjunct RELab tenoexo therapy could enhance therapy doses and, potentially, long-term outcomes.
Collapse
Affiliation(s)
- Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy;
- Cereneo, Center for Neurology and Rehabilitation, Seestrasse 18, 6354 Vitznau, Switzerland
| | - Margherita Razzoli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Pierre Sanson
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Jaeyong Song
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland; (S.G.); (A.K.-L.)
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy;
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland; (S.G.); (A.K.-L.)
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| |
Collapse
|
3
|
Ismail R, Ariyanto M, Setiawan JD, Hidayat T, Paryanto, Nuswantara LK. Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity. HARDWAREX 2024; 18:e00537. [PMID: 38784668 PMCID: PMC11111837 DOI: 10.1016/j.ohx.2024.e00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Hand exoskeleton robots have been developed as rehabilitation robots and assistive devices. Based on the material used, they can be soft or hard exoskeletons. Soft materials such as fabric can be used as a component of the wearable robot to increase comfortability. In this paper, we proposed an affordable soft hand exoskeleton based on fabric and motor-tendon actuation for hand flexion/extension motion assistance in daily activities. On-off control and PI compensator were implemented to regulate finger flexion and extension of the soft exoskeleton. The controllers were embedded into a microcontroller using Simulink software. The input signal command comes from the potentiometer and electromyography (EMG) sensor to drive the flexion/extension movement. Based on the experiments, the proposed controller successfully controlled the exoskeleton hand to facilitate a user in grasping various objects. The proposed soft hand exoskeleton is lightweight, comfortable, portable, and affordable, making it easily manufactured using available hardware and open-source code. The developed soft exoskeleton is a potential assistive device for a person who lost the ability to grasp objects.
Collapse
Affiliation(s)
- Rifky Ismail
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing (CBIOM3S) Diponegoro University, Semarang, Indonesia
- Professional Education of Engineers, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| | - Mochammad Ariyanto
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Graduate School of Engineering, Mechanical Engineering Department, Osaka University, Suita, Japan
| | - Joga D. Setiawan
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing (CBIOM3S) Diponegoro University, Semarang, Indonesia
| | - Taufik Hidayat
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing (CBIOM3S) Diponegoro University, Semarang, Indonesia
| | - Paryanto
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Professional Education of Engineers, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| | - Limbang K. Nuswantara
- Professional Education of Engineers, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
4
|
Dittli J, Meyer JT, Gantenbein J, Bützer T, Ranzani R, Linke A, Curt A, Gassert R, Lambercy O. Mixed methods usability evaluation of an assistive wearable robotic hand orthosis for people with spinal cord injury. J Neuroeng Rehabil 2023; 20:162. [PMID: 38041135 PMCID: PMC10693050 DOI: 10.1186/s12984-023-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Robotic hand orthoses (RHO) aim to provide grasp assistance for people with sensorimotor hand impairment during daily tasks. Many of such devices have been shown to bring a functional benefit to the user. However, assessing functional benefit is not sufficient to evaluate the usability of such technologies for daily life application. A comprehensive and structured evaluation of device usability not only focusing on effectiveness but also efficiency and satisfaction is required, yet often falls short in existing literature. Mixed methods evaluations, i.e., assessing a combination of quantitative and qualitative measures, allow to obtain a more holistic picture of all relevant aspects of device usability. Considering these aspects already in early development stages allows to identify design issues and generate generalizable benchmarks for future developments. METHODS We evaluated the short-term usability of the RELab tenoexo, a RHO for hand function assistance, in 15 users with tetraplegia after a spinal cord injury through a comprehensive mixed methods approach. We collected quantitative data using the Action Research Arm Test (ARAT), the System Usability Scale (SUS), and timed tasks such as the donning process. In addition, qualitative data were collected through semi-structured interviews and user observations, and analyzed with a thematic analysis to enhance the usability evaluation. All insights were attributed and discussed in relation to specifically defined usability attributes such as comfort, ease of use, functional benefit, and safety. RESULTS The RELab tenoexo provided an immediate functional benefit to the users, resulting in a mean improvement of the ARAT score by 5.8 points and peaking at 15 points improvement for one user (clinically important difference: 5.7 points). The mean SUS rating of 60.6 represents an adequate usability, however, indicating that especially the RHO donning (average task time = 295 s) was perceived as too long and cumbersome. The participants were generally very satisfied with the ergonomics (size, dimensions, fit) of the RHO. Enhancing the ease of use, specifically in donning, increasing the provided grasping force, as well as the availability of tailoring options and customization were identified as main improvement areas to promote RHO usability. CONCLUSION The short-term usability of the RELab tenoexo was thoroughly evaluated with a mixed methods approach, which generated valuable data to improve the RHO in future iterations. In addition, learnings that might be transferable to the evaluation and design of other RHO were generated, which have the potential to increase the daily life applicability and acceptance of similar technologies.
Collapse
Affiliation(s)
- Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland.
| | - Jan T Meyer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Jessica Gantenbein
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Tobias Bützer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Anita Linke
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
- Singapore-ETH Centre, Future Health Technologies Programme, CREATE campus, 1 Create Way, #06-01 CREATE Tower, 138602, Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
- Singapore-ETH Centre, Future Health Technologies Programme, CREATE campus, 1 Create Way, #06-01 CREATE Tower, 138602, Singapore, Singapore
| |
Collapse
|
5
|
Dittli J, Goikoetxea-Sotelo G, Lieber J, Gassert R, Meyer-Heim A, Van Hedel HJA, Lambercy O. A Tailorable Robotic Hand Orthosis to Support Children with Neurological Hand Impairments: a Case Study in a Child's Home. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941220 DOI: 10.1109/icorr58425.2023.10304752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Neurological disorders such as traumatic brain injuries (TBI) can lead to hand impairments in children, negatively impacting their quality of life. Fully wearable robotic hand orthoses (RHO) have been proposed to actively support children and promote the use of the impaired limb in daily life. Here we report a case study on the feasibility of using the pediatric RHO PEXO for assistance at home in a 13- year-old child with hand impairment after TBI. The size and functionalities of the RHO were first fully tailored to the child's needs. We trained the child and their parent on independently using the RHO before taking it home for a period of two weeks. The use of the RHO improved hand ability. Additionally, the tailoring and training benefited the unimanual capacity (Box and Block Test score +2 after tailoring) and bimanual performance (Assisting Hand Assessment score +4) of the child with PEXO. Further, it increased device acceptance by the child and the parent. The child used PEXO at home for 76 minutes distributed over three days during eating and drinking tasks. Personal and environmental factors caused the moderate use. No adverse events or safety-related issues occurred. This study highlights the value of tailoring an assistive RHO and, for the first time, demonstrates the feasibility of home use of a pediatric RHO by children with neurological hand impairments.
Collapse
|
6
|
Gantenbein J, Ahmadizadeh C, Heeb O, Lambercy O, Menon C. Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals. J Neuroeng Rehabil 2023; 20:101. [PMID: 37537602 PMCID: PMC10399035 DOI: 10.1186/s12984-023-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Assistive robotic hand orthoses can support people with sensorimotor hand impairment in many activities of daily living and therefore help to regain independence. However, in order for the users to fully benefit from the functionalities of such devices, a safe and reliable way to detect their movement intention for device control is crucial. Gesture recognition based on force myography measuring volumetric changes in the muscles during contraction has been previously shown to be a viable and easy to implement strategy to control hand prostheses. Whether this approach could be efficiently applied to intuitively control an assistive robotic hand orthosis remains to be investigated. METHODS In this work, we assessed the feasibility of using force myography measured from the forearm to control a robotic hand orthosis worn on the hand ipsilateral to the measurement site. In ten neurologically-intact participants wearing a robotic hand orthosis, we collected data for four gestures trained in nine arm configurations, i.e., seven static positions and two dynamic movements, corresponding to typical activities of daily living conditions. In an offline analysis, we determined classification accuracies for two binary classifiers (one for opening and one for closing) and further assessed the impact of individual training arm configurations on the overall performance. RESULTS We achieved an overall classification accuracy of 92.9% (averaged over two binary classifiers, individual accuracies 95.5% and 90.3%, respectively) but found a large variation in performance between participants, ranging from 75.4 up to 100%. Averaged inference times per sample were measured below 0.15 ms. Further, we found that the number of training arm configurations could be reduced from nine to six without notably decreasing classification performance. CONCLUSION The results of this work support the general feasibility of using force myography as an intuitive intention detection strategy for a robotic hand orthosis. Further, the findings also generated valuable insights into challenges and potential ways to overcome them in view of applying such technologies for assisting people with sensorimotor hand impairment during activities of daily living.
Collapse
Affiliation(s)
- Jessica Gantenbein
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Chakaveh Ahmadizadeh
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Oliver Heeb
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Carlo Menon
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland.
| |
Collapse
|
7
|
Dittli J, Vasileiou C, Asanovski H, Lieber J, Lin JB, Meyer-Heim A, Van Hedel HJA, Gassert R, Lambercy O. Design of a compliant, stabilizing wrist mechanism for a pediatric hand exoskeleton. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176168 DOI: 10.1109/icorr55369.2022.9896550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Children affected by hand impairment due to cerebral palsy or stroke experience serious difficulties when performing activities of daily life (ADL), which reduces their quality of life and development. Wearable robots such as hand exoskeletons have been proposed to support people with hand impairment in therapy as well as daily tasks. While numerous actuated wearable robots have been developed, few designs support both fingers and wrist function, despite being mutually relevant for reach-to-grasp tasks. A recent feasibility study investigating the use of PEXO, a lightweight and fully wearable pediatric hand exoskeleton, showed that a wrist fixed in a slightly extended position may limit the user's ability to reach and grasp during ADL and restrict the user group. These insights and further interactions with clinicians inspired a novel design of PEXO that features an additional degree of freedom in the wrist. In this paper, we present a compliant wrist mechanism extending the existing leaf spring finger mechanism of the device. The novel design provides both wrist motion capability of 60° in flexion and extension and wrist stabilization at the same time while actively supporting finger motion. Preliminary results suggest that the adjustability in the wrist enables a larger variety of grasping gestures. The implemented wrist support has the potential to allow for a more versatile use of PEXO and increase the potential target user group.
Collapse
|
8
|
Lieber J, Dittli J, Lambercy O, Gassert R, Meyer-Heim A, van Hedel HJA. Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement. J Neuroeng Rehabil 2022; 19:17. [PMID: 35148786 PMCID: PMC8832660 DOI: 10.1186/s12984-022-00994-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate.
Collapse
Affiliation(s)
- Jan Lieber
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Andreas Meyer-Heim
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Hubertus J A van Hedel
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland. .,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| |
Collapse
|
9
|
Tiboni M, Borboni A, Vérité F, Bregoli C, Amici C. Sensors and Actuation Technologies in Exoskeletons: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:884. [PMID: 35161629 PMCID: PMC8839165 DOI: 10.3390/s22030884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these robots has grown exponentially, and sensors and actuation technologies are two fundamental research themes for their development. In this review, an in-depth study of the works related to exoskeletons and specifically to these two main aspects is carried out. A preliminary phase investigates the temporal distribution of scientific publications to capture the interest in studying and developing novel ideas, methods or solutions for exoskeleton design, actuation and sensors. The distribution of the works is also analyzed with respect to the device purpose, body part to which the device is dedicated, operation mode and design methods. Subsequently, actuation and sensing solutions for the exoskeletons described by the studies in literature are analyzed in detail, highlighting the main trends in their development and spread. The results are presented with a schematic approach, and cross analyses among taxonomies are also proposed to emphasize emerging peculiarities.
Collapse
Affiliation(s)
- Monica Tiboni
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy; (M.T.); (C.A.)
| | - Alberto Borboni
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy; (M.T.); (C.A.)
| | - Fabien Vérité
- Agathe Group INSERM U 1150, UMR 7222 CNRS, ISIR (Institute of Intelligent Systems and Robotics), Sorbonne Université, 75005 Paris, France;
| | - Chiara Bregoli
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), Via Previati 1/E, 23900 Lecco, Italy;
| | - Cinzia Amici
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy; (M.T.); (C.A.)
| |
Collapse
|
10
|
Secciani N, Brogi C, Pagliai M, Buonamici F, Gerli F, Vannetti F, Bianchini M, Volpe Y, Ridolfi A. Wearable Robots: An Original Mechatronic Design of a Hand Exoskeleton for Assistive and Rehabilitative Purposes. Front Neurorobot 2021; 15:750385. [PMID: 34744679 PMCID: PMC8568131 DOI: 10.3389/fnbot.2021.750385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Robotic devices are being employed in more and more sectors to enhance, streamline, and augment the outcomes of a wide variety of human activities. Wearable robots arise indeed as of-vital-importance tools for telerehabilitation or home assistance targeting people affected by motor disabilities. In particular, the field of “Robotics for Medicine and Healthcare” is attracting growing interest. The development of such devices is a primarily addressed topic since the increasing number of people in need of rehabilitation or assistive therapies (due to population aging) growingly weighs on the healthcare systems of the nation. Besides, the necessity to move to clinics represents an additional logistic burden for patients and their families. Among the various body parts, the hand is specially investigated since it most ensures the independence of an individual, and thus, the restoration of its dexterity is considered a high priority. In this study, the authors present the development of a fully wearable, portable, and tailor-made hand exoskeleton designed for both home assistance and telerehabilitation. Its purpose is either to assist patients during activities of daily living by running a real-time intention detection algorithm or to be used for remotely supervised or unsupervised rehabilitation sessions by performing exercises preset by therapists. Throughout the mechatronic design process, special attention has been paid to the complete wearability and comfort of the system to produce a user-friendly device capable of assisting people in their daily life or enabling recorded home rehabilitation sessions allowing the therapist to monitor the state evolution of the patient. Such a hand exoskeleton system has been designed, manufactured, and preliminarily tested on a subject affected by spinal muscular atrophy, and some results are reported at the end of the article.
Collapse
Affiliation(s)
- Nicola Secciani
- Department of Industrial Engineering, University of Florence, Firenze, Italy
| | - Chiara Brogi
- Department of Industrial Engineering, University of Florence, Firenze, Italy
| | - Marco Pagliai
- Department of Industrial Engineering, University of Florence, Firenze, Italy
| | - Francesco Buonamici
- Department of Industrial Engineering, University of Florence, Firenze, Italy
| | - Filippo Gerli
- IRCCS Don Gnocchi, Don Carlo Gnocchi Foundation, Firenze, Italy
| | | | - Massimo Bianchini
- Institute for Complex Systems, National Research Council, Sesto Fiorentino, Italy
| | - Yary Volpe
- Department of Industrial Engineering, University of Florence, Firenze, Italy
| | - Alessandro Ridolfi
- Department of Industrial Engineering, University of Florence, Firenze, Italy
| |
Collapse
|