1
|
Tan J, Lamont GJ, Scott DA. Tobacco-enhanced biofilm formation by Porphyromonas gingivalis and other oral microbes. Mol Oral Microbiol 2024; 39:270-290. [PMID: 38229003 PMCID: PMC11250950 DOI: 10.1111/omi.12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024]
Abstract
Microbial biofilms promote pathogenesis by disguising antigens, facilitating immune evasion, providing protection against antibiotics and other antimicrobials and, generally, fostering survival and persistence. Environmental fluxes are known to influence biofilm formation and composition, with recent data suggesting that tobacco and tobacco-derived stimuli are particularly important mediators of biofilm initiation and development in vitro and determinants of polymicrobial communities in vivo. The evidence for tobacco-augmented biofilm formation by oral bacteria, tobacco-induced oral dysbiosis, tobacco-resistance strategies, and bacterial physiology is summarized herein. A general overview is provided alongside specific insights gained through studies of the model and archetypal, anaerobic, Gram-negative oral pathobiont, Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Jinlian Tan
- Department of Oral Immunology and Infectious Diseases,
University of Louisville, Louisville, KY, USA
| | - Gwyneth J. Lamont
- Department of Oral Immunology and Infectious Diseases,
University of Louisville, Louisville, KY, USA
| | - David A. Scott
- Department of Oral Immunology and Infectious Diseases,
University of Louisville, Louisville, KY, USA
- Center for Microbiomics, Inflammation and Pathogenicity,
University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Tan J, Lamont GJ, Sekula M, Hong H, Sloan L, Scott DA. The transcriptomic response to cannabidiol of Treponema denticola, a phytocannabinoid-resistant periodontal pathogen. J Clin Periodontol 2024; 51:222-232. [PMID: 38105008 DOI: 10.1111/jcpe.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
AIM The use of cannabis, which contains multiple antimicrobials, may be a risk factor for periodontitis. We hypothesized that multiple oral spirochetes would be phytocannabinoid-resistant and that cannabidiol (CBD) would act as an environmental stressor to which Treponema denticola would respond transcriptionally, thereby providing first insights into spirochetal survival strategies. MATERIALS AND METHODS Oral spirochete growth was monitored spectrophotometrically in the presence and absence of physiologically relevant phytocannabinoid doses, the transcriptional response to phytocannabinoid exposure determined by RNAseq, specific gene activity fluxes verified using qRT-PCR and orthologues among fully sequenced oral spirochetes identified. RESULTS Multiple strains of oral treponemes were resistant to CBD (0.1-10 μg/mL), while T. denticola ATCC 35405 was resistant to all phytocannabinoids tested (CBD, cannabinol [CBN], tetrahydrocannabinol [THC]). A total of 392 T. denticola ATCC 35405 genes were found to be CBD-responsive by RNAseq. A selected subset of these genes was independently verified by qRT-PCR. Genes found to be differentially activated by both methods included several involved in transcriptional regulation and toxin control. Suppressed genes included several involved in chemotaxis and proteolysis. CONCLUSIONS Oral spirochetes, unlike some other periodontal bacteria, are resistant to physiological doses of phytocannabinoids. Investigation of CBD-induced transcriptomic changes provided insight into the resistance mechanisms of this important periodontal pathogen. These findings should be considered in the context of the reported enhanced susceptibility to periodontitis in cannabis users.
Collapse
Affiliation(s)
- Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Michael Sekula
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - HeeJue Hong
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Lucy Sloan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Nomura R, Suehiro Y, Tojo F, Matayoshi S, Okawa R, Hamada M, Naka S, Matsumoto-Nakano M, Unesaki R, Koumoto K, Kawauchi K, Nishikata T, Akitomo T, Mitsuhata C, Yagi M, Mizoguchi T, Fujikawa K, Taniguchi T, Nakano K. Inhibitory Effects of Shikonin Dispersion, an Extract of Lithospermum erythrorhizon Encapsulated in β-1,3-1,6 Glucan, on Streptococcus mutans and Non-Mutans Streptococci. Int J Mol Sci 2024; 25:1075. [PMID: 38256148 PMCID: PMC10816867 DOI: 10.3390/ijms25021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Shikonin is extracted from the roots of Lithospermum erythrorhizon, and shikonin extracts have been shown to have inhibitory effects on several bacteria. However, shikonin extracts are difficult to formulate because of their poor water solubility. In the present study, we prepared a shikonin dispersion, which was solubilized by the inclusion of β-1,3-1,6 glucan, and analysed the inhibitory effects of this dispersion on Streptococcus mutans and non-mutans streptococci. The shikonin dispersion showed pronounced anti-S. mutans activity, and inhibited growth of and biofilm formation by this bacterium. The shikonin dispersion also showed antimicrobial and antiproliferative effects against non-mutans streptococci. In addition, a clinical trial was conducted in which 20 subjects were asked to brush their teeth for 1 week using either shikonin dispersion-containing or non-containing toothpaste, respectively. The shikonin-containing toothpaste decreased the number of S. mutans in the oral cavity, while no such effect was observed after the use of the shikonin-free toothpaste. These results suggest that shikonin dispersion has an inhibitory effect on S. mutans and non-mutans streptococci, and toothpaste containing shikonin dispersion may be effective in preventing dental caries.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan; (T.A.); (C.M.)
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
| | - Fumikazu Tojo
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan;
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Rika Unesaki
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Kazuya Koumoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Takahito Nishikata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan; (T.A.); (C.M.)
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan; (T.A.); (C.M.)
| | - Masatoshi Yagi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- Pharmacrea Kobe Co., Ltd., Kobe 651-0085, Hyogo, Japan
| | - Toshiro Mizoguchi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- TSET Co., Ltd., Kariya 448-0022, Aichi, Japan
| | - Koki Fujikawa
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- TSET Co., Ltd., Kariya 448-0022, Aichi, Japan
| | - Taizo Taniguchi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- Pharmacrea Kobe Co., Ltd., Kobe 651-0085, Hyogo, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
| |
Collapse
|
4
|
Insight into the Relationship between Oral Microbiota and the Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10091868. [PMID: 36144470 PMCID: PMC9505529 DOI: 10.3390/microorganisms10091868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease has been a growing concern of lots of people globally, including both adults and children. As a chronic inflammatory disease of the intestine, even though the etiology of inflammatory bowel disease is still unclear, the available evidence from clinic observations has suggested a close association with microorganisms. The oral microbiota possesses the characteristics of a large number and abundant species, second only to the intestinal microbiota in the human body; as a result, it successfully attracts the attention of researchers. The highly diverse commensal oral microbiota is not only a normal part of the oral cavity but also has a pronounced impact on the pathophysiology of general health. Numerous studies have shown the potential associations between the oral microbiota and inflammatory bowel disease. Inflammatory bowel disease can affect the composition of the oral microbiota and lead to a range of oral pathologies. In turn, there are a variety of oral microorganisms involved in the development and progression of inflammatory bowel disease, including Streptococcus spp., Fusobacterium nucleatum, Porphyromonas gingivalis, Campylobacter concisus, Klebsiella pneumoniae, Saccharibacteria (TM7), and Candida albicans. Based on the above analysis, the purpose of this review is to summarize this relationship of mutual influence and give further insight into the detection of flora as a target for the diagnosis and treatment of inflammatory bowel disease to open up a novel approach in future clinical practice.
Collapse
|