1
|
Daunov M, Klisovic RB. Pegylated Interferons: Still a Major Player for the Treatment of Myeloproliferative Neoplasms. Am Soc Clin Oncol Educ Book 2025; 45:e473912. [PMID: 40305740 DOI: 10.1200/edbk-25-473912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Over the past 35 years, interferons have been explored in various formulations for the management of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), such as essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis, and remain a key tool in caring for patients with these diseases. These agents are excellent cytoreductive agents with high rates of hematologic response, are helpful in symptom management, and have a long track record of safety and manageable toxicities. More recently, they have shown promise in sustaining responses over many years, with associated reductions in driver mutations (JAK2, MPL, CALR) of these diseases, particularly in PV and ET. Since reductions in molecular mutant allele burden have been correlated with several response outcomes such as reductions in both thrombotic risk and disease progression, there is emerging proof that interferons may offer disease-modifying activity. These long-term benefits and their use as the preferred agent in young pregnant women who need cytoreduction make interferons often the first choice in young adult population who harbor a lifetime risk of progression. Looking forward, the prospect of sustained treatment-free responses, like chronic myeloid leukemia after deep molecular response, and normal life expectancy may also be on the frontier. Despite relative rookies such as JAK inhibitors in the MPN landscape, the veteran in the game, interferon, remains a key player.
Collapse
Affiliation(s)
- Michael Daunov
- Division of Hematology and Oncology, University Hospitals-Seidman Cancer Center, Cleveland, OH
| | - Rebecca B Klisovic
- Division of Hematology and Oncology, University Hospitals-Seidman Cancer Center, Cleveland, OH
| |
Collapse
|
2
|
Wu D, Kao JH, Piratvisuth T, Wang X, Kennedy PT, Otsuka M, Ahn SH, Tanaka Y, Wang G, Yuan Z, Li W, Lim YS, Niu J, Lu F, Zhang W, Gao Z, Kaewdech A, Han M, Yan W, Ren H, Hu P, Shu S, Kwo PY, Wang FS, Yuen MF, Ning Q. Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0. Clin Mol Hepatol 2025; 31:S134-S164. [PMID: 39838828 PMCID: PMC11925436 DOI: 10.3350/cmh.2024.0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025] Open
Abstract
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
Collapse
Affiliation(s)
- Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Academic Fields of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenhui Li
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Jilin University, Jilin, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Meifang Han
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Paul Yien Kwo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Fu-sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine & State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Malhotra N, Tandon R, Malhotra P. Management of CML and Pregnancy in Low-and Middle-income Countries. Indian J Hematol Blood Transfus 2025; 41:1-9. [PMID: 39917486 PMCID: PMC11794896 DOI: 10.1007/s12288-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/12/2024] [Indexed: 02/09/2025] Open
Abstract
Chronic myeloid leukemia (CML) is one of the most common types of leukemia observed in adults in low- and middle-income countries (LMICs). While the life expectancy of CML patients in the chronic phase in high-income countries (HIC) countries has nearly matched that of the general population, this is not the case for CML patients in LMICs. Several factors contribute to this disparity, including delayed presentation, delayed diagnosis, poor socioeconomic background, illiteracy, lack of insurance, long travel distances to healthcare facilities, limited availability of CML specialists, and the prevalence of tropical infections such as dengue and malaria. Consequently, management guidelines developed for CML patients in HIC are not always applicable to those in LMICs. The same hold true for CML patients who are pregnant or wish to conceive. This manuscript explores these differences and offers tailored recommendations for pregnancy and CML. Male patients with CML can safely father children, as neither the disease nor tyrosine kinase inhibitors (TKIs) impact pregnancy or affect newborns. However, managing CML in female patients is more complex. Although physicians advise planned pregnancies for CML patients, most pregnancies in LMICs are unplanned. Issues such as whether to continue or stop TKI treatment and which TKI to use are critical considerations. Interferon is regarded as safe during pregnancy but is seldom prescribed due to its high cost. This manuscript aims to address these complexities and provide recommendations for pregnant CML patients in LMICs including India.
Collapse
Affiliation(s)
| | - Rimpy Tandon
- Govt Medical College, Sector 32, Chandigarh, India
| | - Pankaj Malhotra
- Dept of Clinical Hematology & Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
4
|
Landtblom AR, Andersson TML, Johansson ALV, Lundberg FE, Samuelsson J, Björkholm M, Hultcrantz M. Childbirth rates in women with myeloproliferative neoplasms. Leukemia 2024; 38:1081-1085. [PMID: 38461191 DOI: 10.1038/s41375-024-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Myeloproliferative neoplasms (MPN) are associated with inferior pregnancy outcome, however, little is known about fertility and childbearing potential in women with MPN. In this study we aimed to describe reproductive patterns, as well as to quantify risk of miscarriage and stillbirth. Women aged 15-44 years with an MPN diagnosis 1973-2018, were identified in Swedish health care registers, and age-matched 1:4 to population controls. We identified 1141 women with MPN and 4564 controls. Women with MPN had a lower rate of childbirth (hazard ratio [HR] with 95% confidence interval was 0.78 (0.68-0.90)). Subgroup analysis showed that the rate was not significantly reduced in essential thrombocythemia, HR 1.02 (0.86-1.22) while the HR was 0.50 (0.33-0.76) in PV and 0.45 (0.28-0.74) in PMF. The risk of miscarriage was not significantly increased before MPN diagnosis, the HR during follow-up after diagnosis was 1.25 (0.89-1.76). Women with MPN were more likely to have had a previous stillbirth. Women with MPN had fewer children at diagnosis, and fewer children in total. In conclusion, the childbirth rate was lower among women with MPN than controls, but not among women with essential thrombocythemia.
Collapse
Affiliation(s)
- Anna Ravn Landtblom
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| | - Therese M-L Andersson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna L V Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Cancer Registry of Norway, Oslo, Norway
| | - Frida E Lundberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jan Samuelsson
- Department of Hematology, University Hospital Linköping, Linköping, Sweden
| | - Magnus Björkholm
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Hultcrantz
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Myeloma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, Stockley JH, Finlay J, Hallou C, Fajardo T, Fountain DM, van Dongen S, Joannides A, Morris R, Mair R, Watts C, Santarius T, Price SJ, Hutchinson PJA, Hodson EJ, Pollard SM, Mohorianu I, Barker RA, Sweeney TR, Bayraktar O, Gergely F, Rowitch DH. Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron 2022; 110:3936-3951.e10. [PMID: 36174572 PMCID: PMC7615581 DOI: 10.1016/j.neuron.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Collapse
Affiliation(s)
- Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Gemma C Girdler
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tannia Gracia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Ilias Moutsopoulos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Hancock
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Xiaoling He
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Katherine Ridley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zhaoyang Xu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John H Stockley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Finlay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Clement Hallou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Teodoro Fajardo
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Virology, Royal London Hospital, Barts Health NHS Trust, London E1 2ES, UK
| | | | | | - Alexis Joannides
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert Morris
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard Mair
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Thomas Santarius
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J A Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emma J Hodson
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Trevor R Sweeney
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; The Pirbright Institute, Guildford, Surrey GU24 0NF, UK
| | | | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - David H Rowitch
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|