1
|
Losnegard T, Kocbach J, Sandbakk Ø. Pacing Demands in Competitive Nordic Skiing. Int J Sports Physiol Perform 2025; 20:4-16. [PMID: 39231491 DOI: 10.1123/ijspp.2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND PURPOSE Cross-country skiing, biathlon, and Nordic combined are Winter Olympics sports that involve cross-country skiing in undulating terrain, characterized by various subtechniques and repeated intensity fluctuations. The stochastic interval profile of these sports necessitates the continuous regulation of work and energy expenditure throughout training sessions and competitions, a concept known as pacing. With the advent of technological advancements that allow for the measurement of these features during training and competitions, scientific studies have broadened our understanding of the associated racing and pacing demands. We provide the current scientific overview of pacing demands in competitive cross-country skiing, biathlon, and Nordic combined and propose guidelines for how performance can be enhanced by adjusting pacing behavior. CONCLUSIONS AND PRACTICAL APPLICATIONS The study of pacing in skiing has evolved from basic lap-to-lap, or segment, analyses to detailed insights into micropacing strategies. This includes analysis of speed, internal and external power, subtechnique distribution, and associated temporal patterns, combined with subjective ratings of effort. While several objective tools such as heart rate, blood lactate concentration, and speed measurements are widely used in practice, current understanding suggests that these measures should supplement, rather than replace, the use of perceived effort (eg, rating of perceived exertion) to regulate intensity during training and competition in undulating terrain. Therefore, the ability to self-regulate effort appears to be an important performance characteristic and should be developed in adolescents and systematically used to optimize and evaluate the training process and race performance throughout athletes' careers.
Collapse
Affiliation(s)
- Thomas Losnegard
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jan Kocbach
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Falk Neto JH, Faulhaber M, Kennedy MD. The Characteristics of Endurance Events with a Variable Pacing Profile-Time to Embrace the Concept of "Intermittent Endurance Events"? Sports (Basel) 2024; 12:164. [PMID: 38921858 PMCID: PMC11207974 DOI: 10.3390/sports12060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
A variable pacing profile is common in different endurance events. In these races, several factors, such as changes in elevation or race dynamics, lead participants to perform numerous surges in intensity. These surges are so frequent that certain events, such as cross-country (XC) skiing, mountain biking (MTB), triathlon, and road cycling, have been termed "intermittent endurance events". The characteristics of these surges vary depending on the sport: MTB and triathlon require athletes to perform numerous short (<10 s) bouts; XC skiing require periods of short- and moderate-(30 s to 2 min) duration efforts, while road cycling is comprised of a mix of short-, moderate-, and long-duration (>2 min) bouts. These bouts occur at intensities above the maximal metabolic steady state (MMSS), with many efforts performed at intensities above the athletes' maximal aerobic power or speed (MAP/MAS) (i.e., supramaximal intensities). Given the factors that influence the requirement to perform surges in these events, athletes must be prepared to always engage in a race with a highly stochastic pace. The aim of this review is to characterize the variable pacing profile seen in endurance events and to discuss how the performance of multiple maximal and supramaximal surges in intensity can affect how athletes fatigue during a race and influence training strategies that can lead to success in these races.
Collapse
Affiliation(s)
- Joao Henrique Falk Neto
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Martin Faulhaber
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Michael D. Kennedy
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
3
|
Shang L, Shi R, Chen X, Staunton CA. Performance and micro-pacing in sprint cross-country skiing: A comparison of individual time-trial and head-to-head race formats. J Sports Sci 2024; 42:490-497. [PMID: 38594887 DOI: 10.1080/02640414.2024.2340296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
This study compared performance strategies and sub-technique selection in cross-country skate skiing sprint races, specifically individual time-trial (ITT) and head-to-head (H2H) formats. Fourteen male cross-country skiers from the Chinese national team participated in the FIS-sanctioned sprint race day. GNSS and heart rate sensors recorded positioning, skiing speeds, heart rate, sub-technique usage, and skiing kinematics. Statistical parametric mapping (SPM) was used to determine the course positions (clusters) where instantaneous skiing speed was significantly associated with section time. One-way analyses of variance were used to examine differences between the ITT and H2H. H2H race speeds were 2.4 ± 0.2% faster than the ITT race (p < 0.05).Variations in sub-technique and skiing kinematics were observed between race formats, indicating different strategies and tactics employed by athletes. SPM identified specific clusters (primarily uphill) where the fastest athlete gained significant time over the slowest. The greatest time gains were associated with higher G3 sub-technique usage and longer G3 cycle length on steep uphill terrain (9-13% gradients). Integrating SPM analyses and sub-technique assessments can help optimise performance and tactics in sprint races. This study enhances our understanding of cross-country skiing dynamics and performance variations among elite competitors.
Collapse
Affiliation(s)
- Lei Shang
- Division of Sport Science and Physical Education, Tsinghua University, Beijing, China
| | - Ruiying Shi
- School of Sociology, China University of Political Science and Law, Beijing, China
| | - Xiaoping Chen
- Centre for Sport Science, China Institute of Sport Science, Beijing, China
| | - Craig A Staunton
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
4
|
Rispal G, Severin AC, Baumgart JK, Ohlsson ML, Staunton CA. Performance and micro-pacing strategies in sit para-biathlon. J Sports Sci 2023:1-8. [PMID: 37401676 DOI: 10.1080/02640414.2023.2231770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
This study investigated micro-pacing strategies during sit para-biathlon. Six elite sit para-biathletes wore a positioning system device during the world-championships in three different competition formats (Sprint, Middle-distance, and Long-distance). Total Skiing Time (TST), penalty-time, shooting-time, and Total Race Time (TRT) were analysed. One-way analyses of variance were used to compare the relative contributions of TST, penalty-time, and shooting-time to TRT across the three race formats. Statistical parametric mapping (SPM) was used to determine the course positions (clusters) where instantaneous skiing speed was significantly associated with TST. The contribution of TST to TRT was lower for the Long-distance (80 ± 6%) compared to the Sprint (86 ± 5%) and Middle-distance (86 ± 3%) races, however this difference was not statistically significant (p > 0.05). The proportional contribution of penalty-time to TRT was significantly greater (p < 0.05) for the Long-distance (13 ± 6%) compared to the Sprint (5 ± 4%) and Middle-distance (4 ± 3%) races. Statistical parametric mapping (SPM) revealed specific clusters where instantaneous skiing speed was significantly associated with TST. For example, over all laps during the Long-distance race, the fastest athlete gained 6.5 s over the slowest athlete in the section with the steepest uphill. Overall, these findings can provide insights into pacing strategies and help para-biathlon coaches and athletes optimise training programmes to improve performance.
Collapse
Affiliation(s)
- Gauthier Rispal
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Sweden
- Faculty of Sport Sciences, University of Aix-Marseille, Marseille, France
| | - Anna Cecilia Severin
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia Kathrin Baumgart
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie Lund Ohlsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Sweden
- The Swedish School of Health and Sport Sciences (GIH), Department of Physiology, Nutrition and Biomechanics, Stockholm, Sweden
| | - Craig A Staunton
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Sweden
| |
Collapse
|
5
|
Seeberg TM, Kocbach J, Wolf H, Talsnes RK, Sandbakk ØB. Race development and performance-determining factors in a mass-start cross-country skiing competition. Front Sports Act Living 2023; 4:1094254. [PMID: 36704262 PMCID: PMC9871829 DOI: 10.3389/fspor.2022.1094254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Although five of six Olympic events in cross-country skiing involve mass-starts, those events are sparsely examined scientifically. Therefore, in this study, we investigated speed profiles, pacing strategies, group dynamics and their performance-determining impact in a cross-country skiing mass-start competition. Methods Continuous speed and position of 57 male skiers was measured in a six-lap, 21.8 km national mass-start competition in skating style and later followed up with an online questionnaire. Skiers ranked from 1 to 40 were split into four performance-groups: R1-10 for ranks 1 to 10, R11-20 for ranks 11 to 20, R21-30 for ranks 21 to 30, and R31-40 for ranks 31 to 40. Results All skiers moved together in one large pack for 2.3 km, after which lower-performing skiers gradually lost the leader pack and formed small, dynamic packs. A considerable accordion effect occurred during the first half of the competition that lead to additional decelerations and accelerations and a higher risk of incidents that disadvantaged skiers at the back of the pack. Overall, 31% of the skiers reported incidents, but none were in R1-10. The overall trend was that lap speed decreased after Lap 1 for all skiers and thereafter remained nearly unchanged for R1-10, while it gradually decreased for the lower-performing groups. Skiers in R31-40, R21-30, and R11-20 lost the leader pack during Lap 3, Lap 4, and Lap 5, respectively, and more than 60% of the time-loss relative to the leader pack occurred in the uphill terrain sections. Ultimately, skiers in R1-10 sprinted for the win during the last 1.2 km, in which 2.4 s separated the top five skiers, and a photo finish differentiated first from second place. Overall, a high correlation emerged between starting position and final rank. Conclusions Our results suggest that (a) an adequate starting position, (b) the ability to avoid incidents and disadvantages from the accordion effect, (c) tolerate fluctuations in intensity, and (d) maintain speed throughout the competition, particularly in uphill terrain, as well as (e) having well-developed final sprint abilities, are key factors determining performance during skating-style mass-start cross-country skiing competitions.
Collapse
Affiliation(s)
- Trine M. Seeberg
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway,Smart Sensor and Microsensor System, SINTEF Digital, SINTEF AS, Oslo, Norway,Correspondence: Trine M. Seeberg
| | - Jan Kocbach
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Wolf
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Kjøsen Talsnes
- Department of Sports Science and Physical Education, Nord University, Bodø, Norway
| | - Øyvind B. Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
The influence of race tactics for performance in the heats of an international sprint cross-country skiing competition. PLoS One 2022; 17:e0278552. [PMID: 36490303 PMCID: PMC9733856 DOI: 10.1371/journal.pone.0278552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to examine the influence of race tactics for performance in the heats of an international sprint cross-country (XC) skiing competition in the classical style. Thirty elite male XC skiers (age: 24±3 years, sprint International Ski Federation [FIS] points: 61±27) performed a sprint time-trial (STT) followed by one to three 'knock-out' heats on a 1.7 km racecourse. An integrated GNSS/IMU system was used to determine position, sub-technique distribution and kinematics. Positioning was analysed using the television broadcast of the race. STT rank correlated positively with the final rank [(rs (28) = .72, P = .001)]. The top-two finishers in each heat were on average ~3.8% slower in the heats compared to the STT (237.1±3.9 vs. 228.3±4.0 seconds, P = .001). On average, the skiers performed ~10 overtakings per 100 meters from the start to the last uphill segment but only ~3 overtakings per 100 meters in the last two segments in each heat. 93.8% of the top-two finishing skiers positioned themselves at top 2 before approaching the final uphill, in which the top-two finishers and the skiers ranked 3-4 were generally faster than those ranked 5-6 in the heats (both, P = .01). Here, top-four skiers employed 5.3% longer cycle lengths and 3.4% higher cycle rates in the diagonal sub-technique than skiers ranked 5-6 (all, P = .01). The present study demonstrates the importance of race tactics for performance in the heats of sprint XC skiing, in which the main performance-determining factors in the present racecourse were a front position when approaching the final uphill segment combined with the ability to ski fast in that segment. In general, this illustrates how accurate racecourse analyses may help skiers to optimize their race-individual race-strategies in the heats of sprint XC skiing competitions.
Collapse
|
7
|
Staunton CA, Sloof L, Brandts M, Jonsson Kårström M, Laaksonen MS, Björklund G. The Effect of Rifle Carriage on the Physiological and Accelerometer Responses During Biathlon Skiing. Front Sports Act Living 2022; 4:813784. [PMID: 35399594 PMCID: PMC8990322 DOI: 10.3389/fspor.2022.813784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Investigate the effect of biathlon rifle carriage on physiological and accelerometer-derived responses during biathlon skiing. Methods Twenty-eight biathletes (11F, 17M) completed two XC skiing time-trials (~2,300 m), once with and once without the biathlon rifle, with concurrent measurements of HR, skiing speed and accelerations recorded from three triaxial accelerometers attached at the Upper-spine, Lower-spine and Pelvis. Exercise intensity was quantified from HR, skiing speed as well from accelerometry-derived PlayerLoad™ per minute (PL·min-1) and average net force (AvFNet). All metrics were analyzed during Uphill, Flat and Downhill sections of the course. Relationships between accelerometry-derived metrics and skiing speed were examined. Results Time-trials were faster for males compared with females (mean difference: 97 ± 73 s) and No-Rifle compared to With-Rifle (mean difference: 16 ± 9 s). HR was greatest during Downhill (183 ± 5 bpm), followed by Uphill (181 ± 5 bpm) and was lowest in the Flat sections (177 ± 6 bpm, p <0.05). For PL·min-1 and AvFNet there were 3-way Rifle x Gradient x Sensor-Position interactions. Typically, these metrics were greatest during Uphill and Flat sections and were lowest during Downhill sections. Rifle carriage had no impact on the AvFNet at the Lower-Spine or Pelvis. Significant positive linear relationships were identified between skiing speed and accelerometer-derived metrics during Uphill, Flat and Downhill skiing (r = 0.12-0.61, p < 0.05). Conclusions The accelerometry-derived approach used in this study provides the potential of a novel method of monitoring the external demands during skiing. In particular, AvFNet with sensors located close to the center of mass displayed greatest utility because it followed the expected response of external intensity where responses were greatest during uphill sections, followed by flats and lowest during downhills. In addition, there were significant positive relationships between AvFNet and skiing speed ranging from small to large. Accelerometry-derived measures could provide useful estimates of the external demands in XC skiing and biathlon.
Collapse
Affiliation(s)
- Craig A Staunton
- Swedish Winter Sports Research Centre, Faculty of Human Sciences, Mid Sweden University, Östersund, Sweden
| | - Luciën Sloof
- Swedish Winter Sports Research Centre, Faculty of Human Sciences, Mid Sweden University, Östersund, Sweden
| | - Maxime Brandts
- Swedish Winter Sports Research Centre, Faculty of Human Sciences, Mid Sweden University, Östersund, Sweden.,Institute of Sports Science, Saarland University, Saarbrücken, Germany
| | - Malin Jonsson Kårström
- Swedish Winter Sports Research Centre, Faculty of Human Sciences, Mid Sweden University, Östersund, Sweden
| | - Marko S Laaksonen
- Swedish Winter Sports Research Centre, Faculty of Human Sciences, Mid Sweden University, Östersund, Sweden
| | - Glenn Björklund
- Swedish Winter Sports Research Centre, Faculty of Human Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
8
|
Cross-Country Skiers With a Fast-Start Pacing Pattern Increase Time-Trial Performance by Use of a More Even Pacing Strategy. Int J Sports Physiol Perform 2022; 17:739-747. [PMID: 35193112 DOI: 10.1123/ijspp.2021-0394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate whether skiers with a fast-start pacing pattern increase time-trial performance by use of a more even pacing strategy. METHODS Thirty-four skiers (∼17 y, 16 male) performed an individual 7.5 (3 × 2.5) km free-technique race on snow with a self-selected pacing strategy (day 1). Based on the starting pace the first ∼2 minutes (lap-1 first 600-m segment pace·7.5 km pace-1), subjects were ranked into 2 groups: an intervention group with the fastest start pace (INT, n = 17) and a control group with a more conservative pace (CON, n = 17). On day 2, INT were instructed to reduce their start pace based on their average laps-1-to-3 segment pace from day 1, while CON were instructed to maintain their day 1 strategy. RESULTS INT increased their time-trial performance more than CON from day 1 to day 2 (effect size; ES = 0.87, P < .05). From day 1 to day 2, INT slowed their start pace (mean ± 95% confidence interval; 7.7% ± 2.0%, ES = 2.00), with lowered heart rate (HR) (83% ± 2% to 81% ± 2% of HRmax) and 1 to 10 ratings of perceived exertion (5 ± 1 to 4 ± 1), but finished with a faster overall 7.5-km time (-1.9% ± 0.9%, ES = 0.99) (all P < .05). For CON, no change was found for starting pace (-0.7% ± 2.0%, P = .47), overall 7.5-km time (-0.2% ± 1.4%, ES = 0.02, P = .81), ratings of perceived exertion, or HR between days. No differences were found for end-ratings of perceived exertion (9 ± 1) or average HR between day 1 and 2 for either group. CONCLUSION Skiers with a pronounced fast-start pattern benefit by using a more even pacing strategy to optimize time-trial distance skiing performance.
Collapse
|
9
|
Staunton CA, Colyer SL, Karlsson Ø, Swarén M, Ihalainen S, McGawley K. Performance and Micro-Pacing Strategies in a Freestyle Cross-Country Skiing Distance Race. Front Sports Act Living 2022; 4:834474. [PMID: 35252860 PMCID: PMC8893266 DOI: 10.3389/fspor.2022.834474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
This study examined the micro-pacing strategies during a distance freestyle cross-country (XC) skiing competition. Nine female and 10 male highly trained XC skiers wore a GNSS device during a FIS-sanctioned race. The course was ~4900 m; women completed two-laps; men completed three-laps. The course was divided into uphill (S1, S3, S5, S7), downhill (S2, S4, S6, S8), and flat (S9) sections for analyses. Statistical parametric mapping was used to determine the course positions (clusters) where total race time or section time was significantly associated with instantaneous skiing speed. Total race time was associated with instantaneous skiing speed during a cluster in S1 on lap 2 for both sexes (t ≥ 5.899, p ≤ 0.008). The two longest uphill sections (S1; S5) and the flat section (S9) contained clusters where section times were related to instantaneous skiing speed for both sexes (p < 0.05). The fastest woman gained 6.9 s on the slowest woman during a cluster in S1 on lap 1 and 7.3 s during a cluster in S9 on lap 1. The fastest man gained 51.7 s on the slowest man over all clusters in S5 over the 3 laps combined. Compared to skiers with longer total race times, skiers with shorter race times skied with faster instantaneous speeds in some clusters of the uphill sections, as well as on the flat section of the course. This study also identified different relative micro-pacing strategies for women and men during freestyle distance XC skiing races. Finally, statistical parametric mapping analyses can help to identify individual strengths and weaknesses for guiding training programs and optimise competition pacing strategies.
Collapse
Affiliation(s)
- Craig A. Staunton
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- *Correspondence: Craig A. Staunton
| | | | - Øyvind Karlsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Mikael Swarén
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Swedish Unit for Metrology in Sports, School of Education, Health and Social Studies, Dalarna University, Falun, Sweden
| | - Simo Ihalainen
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Research Institute for Olympic Sports, Jyväskylä, Finland
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
10
|
Performance Effects of Video- and Sensor-Based Feedback for Implementing a Terrain-Specific Micropacing Strategy in Cross-Country Skiing. Int J Sports Physiol Perform 2022; 17:1672-1682. [DOI: 10.1123/ijspp.2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Purpose: To investigate the performance effects of video- and sensor-based feedback for implementing a terrain-specific micropacing strategy in cross-country (XC) skiing. Methods: Following a simulated 10-km skating time trial (Race1) on snow, 26 national-level male XC skiers were randomly allocated into an intervention (n = 14) or control group (n = 12), before repeating the race (Race2) 2 days later. Between races, intervention received video- and sensor-based feedback through a theoretical lecture and a practical training session aiming to implement a terrain-specific micropacing strategy focusing on active power production over designated hilltops to save time in the subsequent downhill. The control group only received their overall results and performed a training session with matched training load. Results: From Race1 to Race2, the intervention group increased the total variation of chest acceleration on all hilltops (P < .001) and reduced time compared with the control group in a specifically targeted downhill segment (mean group difference: −0.55 s; 95% confidence interval [CI], −0.9 to −0.19 s; P = .003), as well as in overall time spent in downhill (−14.4 s; 95% CI, −21.4 to −7.4 s; P < .001) and flat terrain (−6.5 s; 95% CI, −11.0 to −1.9 s; P = .006). No between-groups differences were found for either overall uphill terrain (−9.3 s; 95% CI, −31.2 to 13.2 s; P = .426) or total race time (−32.2 s; 95% CI, −100.2 to 35.9 s; P = .339). Conclusion: Targeted training combined with video- and sensor-based feedback led to a successful implementation of a terrain-specific micropacing strategy in XC skiing, which reduced the time spent in downhill and flat terrain for intervention compared with a control group. However, no change in overall performance was observed between the 2 groups of XC skiers.
Collapse
|