1
|
Zhu RTL, Hung TTM, Lam FMH, Li JZ, Luo YY, Sun J, Wang S, Ma CZH. Older Fallers' Comprehensive Neuromuscular and Kinematic Alterations in Reactive Balance Control: Indicators of Balance Decline or Compensation? A Pilot Study. Bioengineering (Basel) 2025; 12:66. [PMID: 39851340 PMCID: PMC11762401 DOI: 10.3390/bioengineering12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Falls and fall consequences in older adults are global health issues. Previous studies have compared postural sways or stepping strategies between older adults with and without fall histories to identify factors associated with falls. However, more in-depth neuromuscular/kinematic mechanisms have remained unclear. This study aimed to comprehensively investigate muscle activities and joint kinematics during reactive balance control in older adults with different fall histories. Methods: This pilot observational study recruited six community-dwelling older fallers (≥1 fall in past one year) and six older non-fallers, who received unpredictable translational balance perturbations in randomized directions and intensities during standing. The whole-body center-of-mass (COM) displacements, eight dominant-leg joint motions and muscle electrical activities were collected, and analyzed using the temporal and amplitude parameters. Results: Compared to non-fallers, fallers had significantly: (a) smaller activation rate of the ankle dorsiflexor, delayed activation of the hip flexor/extensor, larger activation rate of the knee flexor, and smaller agonist-antagonist co-contraction in lower-limb muscles; (b) larger knee/hip flexion angles, longer ankle dorsiflexion duration, and delayed timing of recovery in joint motions; and (c) earlier downward COM displacements and larger anteroposterior overshooting COM displacements following unpredictable perturbations (p < 0.05). Conclusions: Compared to non-fallers, fallers used more suspensory strategies for reactive standing balance, which compensated for inadequate ankle/hip strategies but resulted in prolonged recovery. A further longitudinal study with a larger sample is still needed to examine the diagnostic accuracies and training values of these identified neuromuscular/kinematic factors in differentiating fall risks and preventing future falls of older people, respectively.
Collapse
Affiliation(s)
- Ringo Tang-Long Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Timmi Tim Mei Hung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
| | - Freddy Man Hin Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China;
| | - Jun-Zhe Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
| | - Yu-Yan Luo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
| | - Jingting Sun
- Future Architecture and Urban Research Institute, Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China;
| | - Shujun Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Christina Zong-Hao Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Faria JO, Favretto MEC, Bezerra IS, Santos TF, Lemos TW, Junqueira EB, Santiago PRP, Moraes R. Effect of a Perturbation-Based Balance Training Session on Adaptive Locomotor Response in Older Adults With a History of Falls. Motor Control 2025; 29:37-52. [PMID: 39179222 DOI: 10.1123/mc.2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 08/26/2024]
Abstract
AIM To assess the adaptive response of older adults with a history of falls in a single Perturbation-Based Balance Training (PBT) session by examining the margin of stability (MoS) and the number of falls. METHODS Thirty-two older adults with a history of falls underwent a treadmill walking session lasting 20-25 min. During the PBT protocol, participants experienced 24 unexpected perturbations delivered in two ways: acceleration or deceleration of the treadmill belt, with 12 perturbations in each direction. The MoS in the anteroposterior direction was assessed for the first and last perturbations of the session, during the perturbation step (N) and the recovery step (REC), along with the number of falls during the training session. RESULTS There was no statistically significant difference in MoS between the first and last perturbations (acceleration and deceleration) for steps N and REC. Regarding the number of falls, a significant reduction was found when comparing the first half with the second half of the training session (p = .033). There were 13 falls in the first half and only three in the second half of the PBT session. CONCLUSION Older adults with a history of falls exhibited an adaptive response with a reduction in the number of falls during a single session of PBT despite not showing changes in the MoS.
Collapse
Affiliation(s)
- Júlia O Faria
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria E C Favretto
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isadora S Bezerra
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago F Santos
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tenysson W Lemos
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo B Junqueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo R P Santiago
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato Moraes
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Rosenblum U, Lavi A, Fischer AG, Parmet Y, Haim A, Handelzalts S. The effect of arm restriction on dynamic stability and upper-body responses to lateral loss of balance during walking: an observational study. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241156. [PMID: 39665098 PMCID: PMC11631449 DOI: 10.1098/rsos.241156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
When losing balance, upper-body movements serve as mechanical aids to regain stability. However, it remains unclear how these movements contribute to dynamic stability during recovery from a lateral loss of balance while walking with arm restriction. We aimed to (i) quantify the effect of arm restriction on gait stability and upper-body velocities and (ii) characterize upper-body kinematic strategies in response to lateral surface translations under different arm restriction conditions. Healthy adults were exposed to lateral surface translations while walking on a computerized treadmill under three conditions: 'free arms', '1-arm restricted' and '2-arms restricted'. Dynamic stability and upper-body velocities for the first step after perturbation onset were extracted. We found decreased dynamic stability in the sagittal plane and increased trunk velocity in the '2-arms restricted' condition compared with the 'free arms' condition. Head and trunk movements in the medio-lateral plane were in opposite directions in 44.31% of responses. Additionally, significant trunk velocities were observed in the opposite direction to the perturbation-induced loss of balance. Our results support the contribution of increased upper-body velocities to balance responses following arm-restricted walking perturbations and suggest that the '2-arms restricted' condition may be utilized as a perturbation-based balance training, focusing on head and trunk responses.
Collapse
Affiliation(s)
- Uri Rosenblum
- Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Health Sciences, Brunel University London, London, UK
| | - Adi Lavi
- Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Physical Therapy, Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
| | - Arielle G Fischer
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amir Haim
- Department of Orthopedic Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirley Handelzalts
- Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Physical Therapy, Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
| |
Collapse
|
4
|
Khajooei M, Quarmby A, Mayer F, Engel T. Biomechanical feedback and feedforward responses during perturbed running in asymptomatic individuals. Front Sports Act Living 2024; 6:1403770. [PMID: 39650254 PMCID: PMC11620854 DOI: 10.3389/fspor.2024.1403770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
Assessment of biomechanical features whilst running on an uneven terrain plays an important role in identifying running-related injury mechanisms. However, feedback and feedforward motor responses and adaptations, an important component of gait retraining and injury rehabilitation programs, have been less investigated during running. Therefore, the current study assessed the whole-session responses and within-session adaptation mechanisms during perturbed running. Twenty three individuals performed an eight-minute perturbed treadmill running protocol with one-sided decelerative belt perturbations. Joint angle curves and muscle activity amplitudes were analysed throughout the running cycle, in both the perturbed and contralateral leg. For the whole-session responses, the average of 10 consecutive strides during the baseline trial and all perturbed strides from the perturbed running trial were compared. To assess within-session adaptation, the first perturbation was compared to the average of the last three perturbations. Data were analysed with one-dimensional statistical parametric mapping of Paired t-tests to assess responses and adaptations to the perturbations (P < 0.025). Regarding whole-session responses (baseline vs. perturbations), statistically significant feedback (after perturbation) responses were detected in most measured joint angles and muscle activity of both perturbed and contralateral legs. Feedforward (before perturbation) responses for whole-session comparison were detected for most joint angles in the contralateral leg and only hip flexion in the perturbed leg. Feedforward muscle activities of whole-session responses were different in the biceps femoris, semitendinosus, and erector spinae of the perturbed leg, and the soleus of the contralateral leg. Regarding within-session (first vs. last three perturbations) adaptation, feedback adaptations included statistically significant changes in ankle, knee, and hip movements, and muscle activities in the perturbed leg, while the contralateral leg showed less adaptation. No significant feedforward within-session adaptations were observed in the perturbed leg, but the contralateral leg showed changes in ankle dorsiflexion, soleus activity, and erector spinae activity. Findings suggest that participants compensated perturbations during running by modifying muscle activities and movement patterns, primarily through feedback mechanisms in the perturbed leg, with limited feedforward adaptations. The current protocol may present a viable approach for testing and training postural control during running.
Collapse
Affiliation(s)
- Mina Khajooei
- Sports Medicine and Sports Orthopaedics, University of Potsdam, University Outpatient Clinic, Potsdam, Germany
| | | | | | | |
Collapse
|
5
|
Hezel N, Buchner T, Becker C, Bauer JM, Sloot LH, Steib S, Werner C. The Stepping Threshold Test for assessing reactive balance discriminates between older adult fallers and non-fallers. Front Sports Act Living 2024; 6:1462177. [PMID: 39465209 PMCID: PMC11502312 DOI: 10.3389/fspor.2024.1462177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The ability to respond effectively to external perturbations is crucial for avoiding falls. The Stepping Threshold Test (STT) has been developed to assess this reactive balance, but its ability to discriminate between fallers and non-fallers is still unsubstantiated. This study aimed to evaluate the discriminant validity of the STT in distinguishing fallers and non-fallers and its convergent validity. Methods Thirty-six older adults (age = 80 ± 5 years), with 13 (36%) of them reporting a fall history in the past year, completed the STT on a perturbation treadmill. They received surface perturbations of progressively increasing magnitude while standing. Single- and multiple-step thresholds were assessed using an all-step count evaluation (STT-ACE), and a direction-sensitive evaluation strategy (STT-DSE). Receiver operating characteristics and area under the curves (AUC) were analyzed to evaluate the discriminative accuracy. Convergent validity was explored by 13 hypothesized associations with other mobility, psychological, and cognitive assessments. Results Fallers and non-fallers significantly differed in the STT-DSE (p = 0.033), but not in the STT-ACE or other commonly used mobility assessments. Acceptable discriminative accuracy was obtained for the STT-DSE (AUC = 0.72), but not for the STT-ACE and other mobility assessments (AUC = 0.53-0.68). Twelve (92%) associations were consistent with our hypotheses for the STT-DSE, and ten (77%) for the STT-ACE. Conclusion Our findings provide preliminary evidence that the STT, when using the STT-DSE, may discriminate between older adult fallers and non-fallers. The STT appears to be a valid tool for assessing reactive balance, with its STT-DSE being recommended due to its better discriminant and convergent validity compared to the STT-ACE.
Collapse
Affiliation(s)
- Natalie Hezel
- Geriatric Centre, Heidelberg University Hospital, Agaplesion Bethanien Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Buchner
- Geriatric Centre, Heidelberg University Hospital, Agaplesion Bethanien Hospital Heidelberg, Heidelberg, Germany
| | - Clemens Becker
- Unit of Digital Geriatric Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen M. Bauer
- Geriatric Centre, Heidelberg University Hospital, Agaplesion Bethanien Hospital Heidelberg, Heidelberg, Germany
| | - Lizeth H. Sloot
- Optimization, Robotics, and Biomechanics, Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany
- Translational and Clinical Research Institute (TCRI), Newcastle University, Newcastle, United Kingdom
| | - Simon Steib
- Department of Human Movement, Training and Active Aging, Institute of Sports and Sports Science, Heidelberg University, Heidelberg, Germany
| | - Christian Werner
- Geriatric Centre, Heidelberg University Hospital, Agaplesion Bethanien Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Voß M, Zieschang T, Schmidt L, Hackbarth M, Koschate J, Stuckenschneider T. Reduced adaptability to balance perturbations in older adults with probable cognitive impairment after a severe fall. PLoS One 2024; 19:e0305067. [PMID: 38985810 PMCID: PMC11236103 DOI: 10.1371/journal.pone.0305067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Falls in older individuals often result from unexpected balance disturbances during walking, necessitating the analysis of recovery strategies for effective falls prevention. This becomes particularly crucial for individuals with cognitive impairment, who face a higher fall risk compared to cognitively healthy adults. Hence, our study aimed to compare the recovery response to standardized walking perturbations on a treadmill between older adults with cognitive impairment and cognitively healthy older adults. 36 individuals with a recent history of a severe fall, leading to an emergency department visit without subsequent admission, were stratified into two groups (with and without probable cognitive impairment) based on scores of the Montreal Cognitive Assessment. Recovery performance was quantified using force plate data from a perturbation treadmill (M-Gait, Motek Medical B.V., Amsterdam, the Netherlands), specifically evaluating the number of steps needed to restore step length and width to pre perturbation baseline across two trials of nine different perturbations. Individuals with cognitive impairment (n = 18, mean age: 74.7) required significantly (p = 0.045, Cohen's d = 0.69) more steps to recover total steps after perturbations compared to cognitively healthy individuals (n = 18, mean age: 69.7). While step width recovery was similar between the groups, those with probable cognitive impairment required significantly more steps to recover their step length (p = 0.039, Cohen's d = 0.72). Thus, our findings indicate that older adults with probable cognitive impairment manifest inferior gait adaptability, especially in adapting step length, potentially underscoring a critical aspect for effective falls prevention in this population.
Collapse
Affiliation(s)
- Malte Voß
- Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Services, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Tania Zieschang
- Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Services, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Laura Schmidt
- Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Services, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Michel Hackbarth
- Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Services, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Jessica Koschate
- Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Services, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Tim Stuckenschneider
- Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Services, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| |
Collapse
|
7
|
Baček T, Sun M, Liu H, Chen Z, Manzie C, Burdet E, Kulić D, Oetomo D, Tan Y. A biomechanics and energetics dataset of neurotypical adults walking with and without kinematic constraints. Sci Data 2024; 11:646. [PMID: 38890343 PMCID: PMC11189391 DOI: 10.1038/s41597-024-03444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Numerous studies have explored the biomechanics and energetics of human walking, offering valuable insights into how we walk. However, prior studies focused on changing external factors (e.g., walking speed) and examined group averages and trends rather than individual adaptations in the presence of internal constraints (e.g., injury-related muscle weakness). To address this gap, this paper presents an open dataset of human walking biomechanics and energetics collected from 21 neurotypical young adults. To investigate the effects of internal constraints (reduced joint range of motion), the participants are both the control group (free walking) and the intervention group (constrained walking - left knee fully extended using a passive orthosis). Each subject walked on a dual-belt treadmill at three speeds (0.4, 0.8, and 1.1 m/s) and five step frequencies ( - 10% to 20% of their preferred frequency) for a total of 30 test conditions. The dataset includes raw and segmented data featuring ground reaction forces, joint motion, muscle activity, and metabolic data. Additionally, a sample code is provided for basic data manipulation and visualisation.
Collapse
Affiliation(s)
- Tomislav Baček
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia.
| | - Mingrui Sun
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| | - Hengchang Liu
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| | - Zhongxiang Chen
- Monash University, Faculty of Engineering, 3800, Melbourne, Australia
| | - Chris Manzie
- The University of Melbourne, Department of Electrical and Electronic Engineering, 3010, Melbourne, Australia
| | - Etienne Burdet
- Imperial College London, Department of Bioengineering, London, United Kingdom
| | - Dana Kulić
- Monash University, Faculty of Engineering, 3800, Melbourne, Australia
| | - Denny Oetomo
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| | - Ying Tan
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| |
Collapse
|
8
|
Kao PC, Pierro MA, Gonzalez DM. Performance during attention-demanding walking conditions in older adults. Gait Posture 2024; 109:70-77. [PMID: 38281432 DOI: 10.1016/j.gaitpost.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Conventional balance and gait assessments for fall risk screening are often conducted under unperturbed conditions. However, older adults can allocate their attention to motor tasks (balance or walking) without revealing performance deficiencies, posing a challenge in identifying those with compromised gait and balance. RESEARCH QUESTIONS Do community-dwelling older adults exhibit greater changes in cognitive and/or walking performance under balance-challenging conditions compared to typical dual-task walking conditions? METHODS Twenty-nine healthy, community-dwelling older adults performed four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) while walking with and without lateral treadmill sways (Perturbed vs. Unperturbed) and during standing. We calculated dual-task costs (DTC) and walking perturbation effects (WPE) as the percentage of change in cognitive and walking performance between dual and single-task conditions and between Perturbed and Unperturbed conditions, respectively. RESULTS Older adults exhibited similar DTC and WPE on cognitive task performance. However, in walking performance, they demonstrated significantly greater WPE than DTC across all gait and stability measures (p < 0.01), including the mean and variability of stride and margins of stability (MOS) measures, the variability of trunk movement and lower-limb joint angles, and the local stability measures. Older adults took shorter but wider steps, exhibited shorter MOSAP but greater MOSML, and experienced increased movement variability and walking instability to a greater extent than during dual-task walking. Overall, changes in variability and stability measures were more pronounced than those in mean gait measures. SIGNIFICANCE Introducing destabilizing perturbations to increase the task demands of balance and gait assessments is a more effective method to challenge older adults compared to simply adding a concurrent cognitive task. Fall screening assessments for community-dwelling older adults should incorporate balance-challenging conditions, such as introducing gait perturbations.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
9
|
Pelicioni PHS, Lord SR, Menant JC, Chaplin C, Canning C, Brodie MA, Sturnieks DL, Okubo Y. Combined Reactive and Volitional Step Training Improves Balance Recovery and Stepping Reaction Time in People With Parkinson's Disease: A Randomised Controlled Trial. Neurorehabil Neural Repair 2023; 37:694-704. [PMID: 37864439 PMCID: PMC10666522 DOI: 10.1177/15459683231206743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
BACKGROUND Falls are frequent and devastating events for people with Parkinson's disease (PD). Here, we investigated whether laboratory-based reactive step training combined with home-based volitional step training was effective in improving balance recovery and stepping ability in people with PD. METHODS Forty-four people with idiopathic PD were randomized into intervention or control groups. Intervention participants performed unsupervised volitional step training using home-based exergames (80+ minutes/week) for 12 weeks and attended reactive step training sessions in which they were exposed to slip and trip perturbations at 4 and 8 weeks. Control participants continued their usual activities. Primary outcomes were balance recovery following an induced-trip/slip and choice stepping reaction time (CSRT) at the 12-week reassessment. Secondary outcomes comprised sensorimotor, balance, cognitive, psychological, complex stepping (inhibitory CSRT and Stroop Stepping Test [SST]), gait measures, and falls experienced in everyday life. RESULTS At reassessment, the intervention group had significantly fewer total laboratory-induced falls and faster CSRT compared to the control group (P < .05). The intervention group also had significantly faster inhibitory CSRT and SST movement times and made fewer mistakes in the SST (P < .05). There were no significant differences in the rate of every day falls or other secondary outcome measures between the groups. CONCLUSION Combined volitional and reactive step training improved balance recovery from an induced-perturbation, voluntary stepping time, and stepping accuracy in cognitively challenging tests in people with PD. Further research is required to determine whether such combined step training can prevent daily-life falls in this population.
Collapse
Affiliation(s)
- Paulo H. S. Pelicioni
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- School of Population Health, University of New South Wales, Randwick, NSW, Australia
- School of Health Sciences, University of New South Wales, Randwick, NSW, Australia
| | - Stephen R. Lord
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- School of Population Health, University of New South Wales, Randwick, NSW, Australia
| | - Jasmine C. Menant
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- School of Population Health, University of New South Wales, Randwick, NSW, Australia
| | - Carly Chaplin
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
| | - Collen Canning
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Matthew A. Brodie
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Randwick, NSW, Australia
| | - Daina L. Sturnieks
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Randwick, NSW, Australia
| | - Yoshiro Okubo
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- School of Population Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
10
|
Hiew S, Eibeck L, Nguemeni C, Zeller D. The Influence of Age and Physical Activity on Locomotor Adaptation. Brain Sci 2023; 13:1266. [PMID: 37759867 PMCID: PMC10526769 DOI: 10.3390/brainsci13091266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aging increases individual susceptibility to falls and injuries, suggesting poorer adaptation of balance responses to perturbation during locomotion, which can be measured with the locomotor adaptation task (LAT). However, it is unclear how aging and lifestyle factors affect these responses during walking. Hence, the present study investigates the relationship between balance and lifestyle factors during the LAT in healthy individuals across the adult lifespan using a correlational design. METHODS Thirty participants aged 20-78 years performed an LAT on a split-belt treadmill (SBT). We evaluated the magnitude and rate of adaptation and deadaptation during the LAT. Participants reported their lifelong physical and cognitive activity. RESULTS Age positively correlated with gait-line length asymmetry at the late post-adaptation phase (p = 0.007). These age-related effects were mediated by recent physical activity levels (p = 0.040). CONCLUSION Our results confirm that locomotor adaptive responses are preserved in aging, but the ability to deadapt newly learnt balance responses is compromised with age. Physical activity mediates these age-related effects. Therefore, gait symmetry post-adaptation could effectively measure the risk of falling, and maintaining physical activity could protect against declines in balance.
Collapse
Affiliation(s)
- Shawn Hiew
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany; (L.E.); (C.N.); (D.Z.)
| | | | | | | |
Collapse
|
11
|
Tong CY, Zhu RTL, Ling YT, Scheeren EM, Lam FMH, Fu H, Ma CZH. Muscular and Kinematic Responses to Unexpected Translational Balance Perturbation: A Pilot Study in Healthy Young Adults. Bioengineering (Basel) 2023; 10:831. [PMID: 37508858 PMCID: PMC10376184 DOI: 10.3390/bioengineering10070831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Falls and fall-related injuries are significant public health problems in older adults. While balance-controlling strategies have been extensively researched, there is still a lack of understanding regarding how fast the lower-limb muscles contract and coordinate in response to a sudden loss of standing balance. Therefore, this pilot study aims to investigate the speed and timing patterns of multiple joint/muscles' activities among the different challenges in standing balance. Twelve healthy young subjects were recruited, and they received unexpected translational balance perturbations with randomized intensities and directions. Electromyographical (EMG) and mechanomyographical (MMG) signals of eight dominant-leg's muscles, dominant-leg's three-dimensional (3D) hip/knee/ankle joint angles, and 3D postural sways were concurrently collected. Two-way ANOVAs were used to examine the difference in timing and speed of the collected signals among muscles/joint motions and among perturbation intensities. This study has found that (1) agonist muscles resisting the induced postural sway tended to activate more rapidly than the antagonist muscles, and ankle muscles contributed the most with the fastest rate of response; (2) voluntary corrective lower-limb joint motions and postural sways could occur as early as the perturbation-induced passive ones; (3) muscles reacted more rapidly under a larger perturbation intensity, while the joint motions or postural sways did not. These findings expand the current knowledge on standing-balance-controlling mechanisms and may potentially provide more insights for developing future fall-prevention strategies in daily life.
Collapse
Affiliation(s)
- Cheuk Ying Tong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Ringo Tang-Long Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Eduardo Mendonça Scheeren
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Freddy Man Hin Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong SAR 999077, China
| | - Christina Zong-Hao Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
12
|
Fallahtafti F, Bruijn S, Mohammadzadeh Gonabadi A, Sangtarashan M, Boron JB, Curtze C, Siu KC, Myers SA, Yentes J. Trunk Velocity Changes in Response to Physical Perturbations Are Potential Indicators of Gait Stability. SENSORS (BASEL, SWITZERLAND) 2023; 23:2833. [PMID: 36905037 PMCID: PMC10007351 DOI: 10.3390/s23052833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Response to challenging situations is important to avoid falls, especially after medial perturbations, which require active control. There is a lack of evidence on the relationship between the trunk's motion in response to perturbations and gait stability. Eighteen healthy adults walked on a treadmill at three speeds while receiving perturbations of three magnitudes. Medial perturbations were applied by translating the walking platform to the right at left heel contact. Trunk velocity changes in response to the perturbation were calculated and divided into the initial and the recovery phases. Gait stability after a perturbation was assessed using the margin of stability (MOS) at the first heel contact, MOS mean, and standard deviation for the first five strides after the perturbation onset. Faster speed and smaller perturbations led to a lower deviation of trunk velocity from the steady state, which can be interpreted as an improvement in response to the perturbation. Recovery was quicker after small perturbations. The MOS mean was associated with the trunk's motion in response to perturbations during the initial phase. Increasing walking speed may increase resistance to perturbations, while increasing the magnitude of perturbation leads to greater trunk motions. MOS is a useful marker of resistance to perturbations.
Collapse
Affiliation(s)
- Farahnaz Fallahtafti
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- VA Nebraska-Western Iowa Health Care System, Department of Veterans’ Affairs, Omaha, NE 68105, USA
| | - Sjoerd Bruijn
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Mohammad Sangtarashan
- Department of Industrial Engineering, Amirkabir University of Technology, Tehran 15875, Iran
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Ka-Chun Siu
- Department of Health & Rehabilitation Sciences, Physical Therapy Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sara A. Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- VA Nebraska-Western Iowa Health Care System, Department of Veterans’ Affairs, Omaha, NE 68105, USA
| | - Jennifer Yentes
- Department of Health & Rehabilitation Sciences, Physical Therapy Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Zukowski LA, Brinkerhoff SA, Iyigun G, Roper JA, Giuliani CA, Plummer P. Fall history in older adults impacts acceleration profiles after a near collision with a moving pedestrian hazard. Aging Clin Exp Res 2023; 35:621-631. [PMID: 36705894 PMCID: PMC12051468 DOI: 10.1007/s40520-023-02345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Environmental hazards (e.g., pedestrian traffic) cause falls and testing environment impacts gait in older adults. However, most fall risk evaluations do not assess real-world moving hazard avoidance. AIMS This study examined the effect of fall history in older adults on acceleration profiles before, during, and after a near collision with a moving hazard, in laboratory and real-world settings. METHODS Older adults with (n = 14) and without a fall history (n = 15) performed a collision avoidance walking task with a sudden moving hazard in real-world and laboratory settings. Gait acceleration and video data of participants' first-person views were recorded. Four mixed effects multilevel models analyzed the magnitude and variability of mean and peak anteroposterior and mediolateral acceleration while walking before, during, and after the moving hazard in both environments. RESULTS In the real-world environment, older adults without a fall history increased their mean anteroposterior acceleration after the moving hazard (p = 0.046), but those with a fall history did not (p > 0.05). Older adults without a fall history exhibited more intersubject variability than those with a fall history in mean (p < 0.001) and peak anteroposterior (p = 0.015) acceleration across environments and epochs. Older adults without a fall history exhibited a slower peak mediolateral reaction during the moving hazard (p = 0.014) than those with a fall history. CONCLUSIONS These results suggest that compared to older adults with a fall history, older adults without a fall history are more adaptable and able to respond last-minute to unexpected hazards. Older adults with a fall history exhibited more homogenous responses.
Collapse
Affiliation(s)
- Lisa A Zukowski
- Department of Physical Therapy, High Point University, High Point, NC, USA.
| | | | - Gozde Iyigun
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, North Cyprus Via Mersin 10, Famagusta, Turkey
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Carol A Giuliani
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Prudence Plummer
- Department of Physical Therapy, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
14
|
McCrum C, Bhatt TS, Gerards MHG, Karamanidis K, Rogers MW, Lord SR, Okubo Y. Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice. Front Sports Act Living 2022; 4:1015394. [PMID: 36275443 PMCID: PMC9583884 DOI: 10.3389/fspor.2022.1015394] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: "Principles and Mechanisms" and "Implementation in Practice." In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Tanvi S. Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Marissa H. G. Gerards
- Department of Epidemiology, Care and Public Health Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
- Department of Physiotherapy, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Stephen R. Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Yoshiro Okubo
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|