1
|
Kositsky A, Stenroth L, Barrett RS, Korhonen RK, Vertullo CJ, Diamond LE, Saxby DJ. Muscle Morphology Does Not Solely Determine Knee Flexion Weakness After Anterior Cruciate Ligament Reconstruction with a Semitendinosus Tendon Graft: A Combined Experimental and Computational Modeling Study. Ann Biomed Eng 2024; 52:1313-1325. [PMID: 38421479 PMCID: PMC10995045 DOI: 10.1007/s10439-024-03455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
The distal semitendinosus tendon is commonly harvested for anterior cruciate ligament reconstruction, inducing substantial morbidity at the knee. The aim of this study was to probe how morphological changes of the semitendinosus muscle after harvest of its distal tendon for anterior cruciate ligament reconstruction affects knee flexion strength and whether the knee flexor synergists can compensate for the knee flexion weakness. Ten participants 8-18 months after anterior cruciate ligament reconstruction with an ipsilateral distal semitendinosus tendon autograft performed isometric knee flexion strength testing (15°, 45°, 60°, and 90°; 0° = knee extension) positioned prone on an isokinetic dynamometer. Morphological parameters extracted from magnetic resonance images were used to inform a musculoskeletal model. Knee flexion moments estimated by the model were then compared with those measured experimentally at each knee angle position. A statistically significant between-leg difference in experimentally-measured maximal isometric strength was found at 60° and 90°, but not 15° or 45°, of knee flexion. The musculoskeletal model matched the between-leg differences observed in experimental knee flexion moments at 15° and 45° but did not well estimate between-leg differences with a more flexed knee, particularly at 90°. Further, the knee flexor synergists could not physiologically compensate for weakness in deep knee flexion. These results suggest additional factors other than knee flexor muscle morphology play a role in knee flexion weakness following anterior cruciate ligament reconstruction with a distal semitendinosus tendon graft and thus more work at neural and microscopic levels is required for informing treatment and rehabilitation in this demographic.
Collapse
Affiliation(s)
- Adam Kositsky
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Lauri Stenroth
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rod S Barrett
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Christopher J Vertullo
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Knee Research Australia, Gold Coast, Queensland, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Suskens JJM, Tol JL, Kerkhoffs GMMJ, Maas H, van Dieën JH, Reurink G. Activity distribution among the hamstring muscles during high-speed running: A descriptive multichannel surface EMG study. Scand J Med Sci Sports 2023; 33:954-965. [PMID: 36752650 DOI: 10.1111/sms.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE This study assessed activity distribution among the hamstring muscles during high-speed running. The objective was to compare within and between muscle activity, relative contribution and hip and knee joint angles at peak muscle activity during high-speed running. METHODS Through multichannel electromyography, we measured muscle activity in male basketball players during high-speed running on a treadmill at 15 locations: five for biceps femoris long head, four for semitendinosus, and six for semimembranosus. Muscle activity was calculated for each location within each hamstring muscle individually for each percent of a stride cycle. RESULTS Twenty-nine non-injured basketball players were included (mean age: 17 ± 1 years; mass, 85 ± 9 kg; height, 193 ± 9 cm). Heterogeneous activity was found for all individual hamstring muscles across multiple events of the stride cycle. In the late-swing phase, muscle activity and relative contribution of the semimembranosus was significantly higher than of the semitendinosus. There was no significant difference in hip and knee joint angles at instant of peak muscle activity, assessed locally within individual hamstring muscles, as well as in general over the whole hamstring muscle. CONCLUSION Hamstring muscles were most active in the late-swing phase during high-speed running. In this phase, the semimembranosus was most active and the semitendinosus was least active. Within the biceps femoris long head, the most proximal region was significantly more active in the late-swing phase, compared to other muscle regions. For each muscle and location, peak muscle activity occurred at similar hip and knee joint angles.
Collapse
Affiliation(s)
- Jozef J M Suskens
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Amsterdam Collaboration on Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Amsterdam, The Netherlands
| | - Johannes L Tol
- Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Amsterdam Collaboration on Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Amsterdam, The Netherlands.,Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Amsterdam Collaboration on Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Amsterdam, The Netherlands
| | - Huub Maas
- Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gustaaf Reurink
- Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Amsterdam Collaboration on Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Amsterdam, The Netherlands
| |
Collapse
|