1
|
Chhetri S, Sherpa MT, Sharma L. Characterization of plant growth promoting bacteria isolated from rhizosphere of tomato cultivated in Sikkim Himalaya and their potential use as biofertilizer. Sci Rep 2025; 15:15558. [PMID: 40319128 PMCID: PMC12049427 DOI: 10.1038/s41598-025-98953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
The rhizosphere hosts a diverse group of beneficial bacteria that can serve as an alternative to chemical fertilizers. Exploring the potential traits of these bacteria can lead to sustainable farming practices, promoting crop yields while minimizing environmental impact. The present study was conducted to characterize and identify native plant growth-promoting bacteria (PGPB) from the rhizosphere of tomato plants cultivated in the organic state of Sikkim, India. Seventy bacterial strains were isolated from different tomato cultivation sites in Sikkim and characterized for their plant growth-promoting (PGP) traits. Out of these, eight potential bacterial strains were selected, and identified as Klebsiella variicola AST1, Bacillus cereus AST3, Enterobacter sichuanensis AST4, Enterobacter mori KH2, Bacillus cereus SG1, Enterobacter sichuanensis SG2, Enterobacter asburiae YG1, and Priestia aryabhattai YG2. Among them, Enterobacter sichuanensis AST4 demonstrated notable ammonia production (55.14 ± 0.03 mM), phosphate solubilization (564.6 ± 0.19 µgmL-1), and nitrogen fixation potential. Similarly, Klebsiella variicola AST1 exhibited the highest indole-3-acetic acid (IAA) production (125.33 ± 0.2 µgmL-1) during in vitro experiments. Likewise, Enterobacter sichuanensis SG2 displayed substantial gibberellic acid (GA3) production (18.3 ± 0.02 µgmL-1), and siderophore production (85%), against the uninoculated control. Greenhouse experiments further revealed that Klebsiella variicola AST1 significantly improved agronomic performance, with increases in plant height (70%), root length (86%), number of leaves (36.6%), and fresh and dry root weight (77% and 58.3% respectively), compared to the uninoculated control. These findings underscore the potential of rhizospheric bacteria from Sikkim's organic tomato fields to enhance plant growth and agricultural productivity, promoting a sustainable crop production system.
Collapse
Affiliation(s)
- Sushmita Chhetri
- Department of Horticulture, School of Life Sciences, Sikkim University, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, Nar Bahadur Bhandari Government College, Sikkim, India
| | - Laxuman Sharma
- Department of Horticulture, School of Life Sciences, Sikkim University, Sikkim, India.
| |
Collapse
|
2
|
Buqori DMAI, Sugiharto B, Suherman, Siswoyo TA, Hariyono K. Mitigating drought stress by application of drought-tolerant Bacillus spp. enhanced root architecture, growth, antioxidant and photosynthetic genes expression in sugarcane. Sci Rep 2025; 15:5259. [PMID: 39939659 PMCID: PMC11821870 DOI: 10.1038/s41598-025-89457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are promising candidates that enhance plant growth under stressful conditions. In this study, 10 bacterial isolates were screened for their IAA production, among them JTB1 and MT22 isolates were selected which produced high IAA levels under 10% PEG and 2% NaCl stress. The isolates showed a high capacity for phosphate solubilization and ACC deaminase activity. Phytogenic analysis showed that the isolate belonged to Bacillus megaterium species JTB1 and MT22. Application of JTB1, MT22, and their consortia as PGPR significantly promoted root development and sugarcane growth under moderate and severe drought stress. Sugarcane growth promotion resulted from the retardation of reactive oxygen species (ROS) synthesis, malondialdehyde (MDA), electrolyte leakage, and cell damage by increasing antioxidant scavenging systems, such as catalase (CAT) and ascorbate peroxidase (APX), owing to PGPR inoculation under drought stress. Inoculation with PGPR resulted in increased auxin transporter expression, which modulated the increase in photosynthetic gene expression of RBC-L, PEPC, SPS in sugarcane under drought stress. The application of JTB1, MT22, or their consortia seemed to have similar effects on all observed parameters. Collectively, these results indicated that inoculation with PGPR enhanced root development and increased the antioxidant system and photosynthetic activity, which promoted sugarcane growth under drought stress.
Collapse
Affiliation(s)
- Dwi Mai Abdul Imam Buqori
- Department of Agronomy, Faculty of Agriculture, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
- Center for Development of Advanced Sciences and Technology, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Bambang Sugiharto
- Center for Development of Advanced Sciences and Technology, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia.
- Department of Biology, Faculty of Mathematic and Natural Science, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia.
| | - Suherman
- Center for Development of Advanced Sciences and Technology, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Tri Agus Siswoyo
- Department of Agronomy, Faculty of Agriculture, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
- Center for Development of Advanced Sciences and Technology, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Kacung Hariyono
- Department of Agronomy, Faculty of Agriculture, Jember University, Kampus Tegal Boto Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| |
Collapse
|
3
|
Chabbi N, Chafiki S, Telmoudi M, Labbassi S, Bouharroud R, Tahiri A, Mentag R, El Amri M, Bendiab K, Hsissou D, Mimouni A, Ait Aabd N, Qessaoui R. Plant-Growth-Promoting Rhizobacteria Improve Seeds Germination and Growth of Argania spinosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2025. [PMID: 39124146 PMCID: PMC11314484 DOI: 10.3390/plants13152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024]
Abstract
Argania spinosa is among the most important species of the Moroccan forest in terms of ecological, environmental, and socio-economic aspects. However, it faces a delicate balance between regeneration and degradation in its natural habitat. Hence, the efforts to preserve and regenerate argan forests are crucial for biodiversity, soil quality, and local livelihoods, yet they face challenges like overgrazing and climate change. Sustainable management practices, including reforestation and community engagement, are vital for mitigating degradation. Similarly, exploiting the argan tree's rhizosphere can enhance soil quality by leveraging its rich microbial diversity. This approach not only improves crop growth but also maintains ecosystem balance, ultimately benefiting both agriculture and the environment. This enrichment can be achieved by different factors: mycorrhizae, plant extracts, algae extracts, and plant growth-promoting rhizobacteria (PGPR). The benefits provided by PGPR may include increased nutrient availability, phytohormone production, shoot, root development, protection against several plant pathogens, and disease reduction. In this study, the effect of rhizobacteria isolated from the Agran rhizosphere was evaluated on germination percentage and radicle length for Argania spinosa in vitro tests, growth, collar diameter, and branching number under greenhouse conditions. One hundred and twenty (120) bacteria were isolated from the argan rhizosphere and evaluated for their capacity for phosphate solubilization and indole acetic acid production. The results showed that 52 isolates could solubilize phosphorus, with the diameters of the solubilization halos varying from 0.56 ± 0.14 to 2.9 ± 0.08 cm. Among 52 isolates, 25 were found to be positive for indole acetic acid production. These 25 isolates were first tested on maize growth to select the most performant ones. The results showed that 14 isolates from 25 tested stimulated maize growth significantly, and 3 of them by 28% (CN005, CN006, and CN009) compared to the control. Eight isolates (CN005, CN006, CN004, CN007, CN008, CN009, CN010, and CN011) that showed plant growth of more than 19% were selected to evaluate their effect on argan germination rate and radicle length and were subjected to DNA extraction and conventional Sanger sequencing. The 8 selected isolates were identified as: Brevundimonas naejangsanensis sp2, Alcaligenes faecalis, Brevundimonas naejangsanensis sp3, Brevundimonas naejangsanensis sp4, Leucobacter aridicollis sp1, Leucobacter aridicollis sp2, Brevundimonas naejangsanensis sp1, and Staphylococcus saprophyticus. The results showed that Leucobacter aridicollis sp2 significantly increased the germination rate by 95.83%, and the radicle length with a value of 2.71 cm compared to the control (1.60 cm), followed by Brevundimonas naejangsanensis sp3 and Leucobacter aridicollis sp1 (2.42 cm and 2.11 cm, respectively). Under greenhouse conditions, the results showed that the height growth increased significantly for Leucobacter aridicollis sp1 (42.07%) and Leucobacter aridicollis sp2 (39.99%). The isolates Brevundimonas naejangsanensis sp3 and Leucobacter aridicollis sp1 increased the gain of collar diameter by 41.56 and 41.21%, respectively, followed by Leucobacter aridicollis sp2 and Staphyloccocus saprophyticus (38.68 and 22.79%). Leucobacter aridicollis sp1 increased the ramification number per plant to 12 compared to the control, which had 6 ramifications per plant. The use of these isolates represents a viable alternative in sustainable agriculture by improving the germination rate and root development of the argan tree, as well as its development, while increasing the availability of nutrients in the soil and consequently improving fertilization.
Collapse
Affiliation(s)
- Naima Chabbi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 4000, Morocco
| | - Salahddine Chafiki
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- AgroBioSciences Department, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Maryem Telmoudi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 4000, Morocco
| | - Said Labbassi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 4000, Morocco
| | - Rachid Bouharroud
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Abdelghani Tahiri
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Rachid Mentag
- Biotechnology Unit, Regional Center of Agronomic Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Majda El Amri
- Biotechnology Unit, Regional Center of Agronomic Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Khadija Bendiab
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 4000, Morocco
| | - Driss Hsissou
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 4000, Morocco
| | - Abdelaziz Mimouni
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Naima Ait Aabd
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Redouan Qessaoui
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| |
Collapse
|
4
|
Kryuchkova YV, Neshko AA, Gogoleva NE, Balkin AS, Safronova VI, Kargapolova KY, Shagimardanova EI, Gogolev YV, Burygin GL. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2. Antonie Van Leeuwenhoek 2024; 117:105. [PMID: 39043973 DOI: 10.1007/s10482-024-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024]
Abstract
A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.
Collapse
Affiliation(s)
- Yelena V Kryuchkova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Alexandra A Neshko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Natalia E Gogoleva
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, 3 Podbelsky Shausse, Pushkin 8, St. Petersburg, Russia, 196608
| | - Kristina Yu Kargapolova
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Moscow Clinical Scientific Center named after Loginov MHD, 1 Novogireevskaya Street, Moscow, Russia, 111123
| | - Yuri V Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, Kazan, Russia, 420111
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
- Institute of Chemistry, Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov, Russia, 410012
| |
Collapse
|
5
|
Samet M, Ghazala I, Karray F, Abid C, Chiab N, Nouri-Ellouz O, Sayadi S, Gargouri-Bouzid R. Isolation of bacterial strains from compost teas and screening of their PGPR properties on potato plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75365-75379. [PMID: 35653020 DOI: 10.1007/s11356-022-21046-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The beneficial effect of compost and compost tea on plant growth and protection is mainly associated with the microbial diversity and the presence of bacteria with plant growth-promoting effect. PGPR are considered as eco-friendly bio-fertilizers that may reduce the use of chemical pesticides and fertilizers. Three composts (AT, A10, and A30) were previously prepared from industrial wastes (olive mill wastewater, olive pomace, coffee ground, and phosphogypsum). In the present study, we isolated three bacterial strains from the compost teas. The phylogenetic identification of these bacterial strains (B.AT, B.A10, and B.A30) showed that they correspond to Serratia liquefaciens (B.AT and B.A10) and Achromobacter spanius (B.A30) species. A further characterization of the PGPR traits of these bacteria showed that they produce siderophore, exopolysaccharides, and IAA. Their effect on potato plant growth, yields, and tuber quality was performed under field culture conditions. Results showed that these strains can be characterized as PGPR, the best effect on potato plant growth was observed with Serratia liquefaciens (B.AT), the best yield and tuber quality was observed with Serratia liquefaciens (B.A10) while bacterial treatment with Achromobacter spanius (B.A30) is a Cd-tolerant PGPR.
Collapse
Affiliation(s)
- Mariem Samet
- Laboratory of Plant Improvement and Agro-Resources Valorization, National School of Engineers of Sfax, road of Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia.
| | - Imen Ghazala
- Laboratory of Plant Improvement and Agro-Resources Valorization, National School of Engineers of Sfax, road of Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Sfax Biotechnology Center, Road of Sidi Mansour km6, BP 1177, 3018, Sfax, Tunisia
| | - Cyrine Abid
- Laboratory of Plant Improvement and Agro-Resources Valorization, National School of Engineers of Sfax, road of Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| | - Nour Chiab
- Laboratory of Plant Improvement and Agro-Resources Valorization, National School of Engineers of Sfax, road of Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| | - Oumèma Nouri-Ellouz
- Laboratory of Plant Improvement and Agro-Resources Valorization, National School of Engineers of Sfax, road of Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Radhia Gargouri-Bouzid
- Laboratory of Plant Improvement and Agro-Resources Valorization, National School of Engineers of Sfax, road of Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| |
Collapse
|