1
|
Ge J, Yang Y, Lu H, Wang B, Yang H, Guo S. Effects of Quinoa Secondary Metabolites on In Vitro Fermentation and Gas Production. Animals (Basel) 2025; 15:1522. [PMID: 40508988 PMCID: PMC12153642 DOI: 10.3390/ani15111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 06/16/2025] Open
Abstract
Livestock methane emissions are a significant source of greenhouse gases. The aim of this study was to investigate the secondary metabolites of different strains of silage quinoa and their impact on methane emissions from livestock farming. In this study, we evaluated the chemical composition, fermentation quality, secondary metabolite content, and in vitro gas production of eight quinoa lines, 093, 137, 231, 238, 565, 666, 770, and 811, grown in saline and alkaline areas of the Yellow River Delta. The results showed that crude protein, EE, and crude ash content ranged from 8.84% to 10.69%, 1.98% to 2.38%, and 17.00% to 23.14%, respectively. The acidic and neutral detergent fiber content of these eight quinoa varieties ranged from 49.31% to 61.91% and 33.29% to 37.31%, respectively. Line 093 had the highest total saponin content, while Line 231 exhibited the highest flavonoid content. Methane yield was significantly and negatively correlated with tannin, saponin, and flavonoid content, whereas carbon dioxide yield showed a positive correlation with saponin and flavonoid content. Among all lines, 770 and 811 demonstrated the lowest methane production, indicating strong in vitro inhibition of methanogenesis. These findings suggest that feeding quinoa silage to ruminants has the potential to reduce greenhouse gas emissions.
Collapse
Affiliation(s)
- Junfeng Ge
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.G.); (Y.Y.); (H.L.); (B.W.); (H.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Yindi Yang
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.G.); (Y.Y.); (H.L.); (B.W.); (H.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Hao Lu
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.G.); (Y.Y.); (H.L.); (B.W.); (H.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Wang
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.G.); (Y.Y.); (H.L.); (B.W.); (H.Y.)
| | - Hongjin Yang
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.G.); (Y.Y.); (H.L.); (B.W.); (H.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.G.); (Y.Y.); (H.L.); (B.W.); (H.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Sacarrão-Birrento L, Harrison LJS, Pienaar R, Toka FN, Torres-Acosta JFJ, Vilela VLR, Hernández-Castellano LE, Arriaga-Jordán CM, Soltan YA, Ungerfeld R, Özkan S, van Harten S, Ferlizza E, Rossiter P, Patra AK, Gunal AC, Bianchi CP, Starič J, Lach G, de Almeida AM. Challenges for Animal Health and Production in the Tropics and Mediterranean for the next 55 years. Trop Anim Health Prod 2024; 56:381. [PMID: 39532768 DOI: 10.1007/s11250-024-04212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Tropical Animal Health and Production is a journal founded 55 years ago. It is dedicated to the publication of results of original research, investigation, and observation in all fields of animal health, welfare and production which may lead to improved health and productivity of livestock and better utilization of animal resources in tropical, subtropical and similar environments. Research is in strong alignment with the United Nations' Sustainable Development Goals, particularly No Poverty, Zero Hunger, and Good Health and Well-being. To celebrate its 55th anniversary, the editorial board has composed this Editorial article in an effort to address the major challenges that animal and veterinary scientists in the tropics and adjacent regions will address over the next 55 years. The task is accomplished in a systematic fashion addressing the topic species by species (cattle, small ruminants, pigs, poultry, camelids, etc.) and in the context of different groups of health challenges encompassing production, vector-borne, parasitic and transboundary diseases. Challenges are difficult and complex, and the solutions herein proposed may be difficult to implement. It aims to be an informed overview of the major difficulties the sector will experience in the near future, ultimately suggesting tools to address them. Only time will tell if they are accurate, effective or implementable. Nevertheless, Tropical Animal Health and Production Editorial Board, secretariat, reviewers and authors will certainly do their best to contribute to the advancement of animal health and production in the Tropics and the Mediterranean.
Collapse
Affiliation(s)
- Laura Sacarrão-Birrento
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Leslie J S Harrison
- University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, EH25 9RG, UK
| | - Ronel Pienaar
- Agricultural Research Council - Onderstepoort Veterinary Research, Epidemiology, Parasites and Vectors, Onderstepoort, South Africa
| | - Felix N Toka
- Ross University School of Veterinary Medicine, West Farm, P. O. Box 334, Basseterre, St. Kitts And Nevis
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786, Warsaw, Poland
| | - Juan F J Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Vinícius Longo Ribeiro Vilela
- Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, Sousa, Paraíba, Brazil
- Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Patos, Paraíba, Brazil
| | - Lorenzo E Hernández-Castellano
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413, Arucas, Spain
| | - Carlos Manuel Arriaga-Jordán
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Instituto Literario # 100, Toluca, Estado de México, Mexico
| | - Yosra Ahmed Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rodolfo Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Sezen Özkan
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Türkiye
| | | | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Langston, OK, 73050, USA
| | - Aysel Caglan Gunal
- Department of Biology Education, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Carolina Paula Bianchi
- Laboratorio de Endocrinología, Centro de Investigación Veterinaria de Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Argentina
| | - Jože Starič
- Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| |
Collapse
|
3
|
Mudannayake A, Karunarathne S, Jayasooriya PW, Nanayakkara D, Abesooriya A, Silva S, Fernando R. Occurrence of aflatoxin M1 in cheese products commonly available in Sri Lankan market. Heliyon 2024; 10:e35155. [PMID: 39170167 PMCID: PMC11336408 DOI: 10.1016/j.heliyon.2024.e35155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Aflatoxins (AFs) are a group of mycotoxins produced by certain fungi of Aspergillus spp. AFs of major concern are B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), and M1 (AFM1). AFM1 is a hydroxylated metabolite of AFB1 formed inside the animal's body which is excreted into milk of cows that consumed AFB1 contaminated feed. Consumption of AFM1-contaminated milk and subsequent dairy products causes negative health effects in consumers. This study was conducted to determine the occurrence and levels of AFM1 in cheese products available in the Sri Lankan market where AFM1 is not regularly monitored in milk while having an outdated regulatory limit of 1 ppb established for dairy products. Processed cheese (n = 28), hard cheese (n = 14), semi-hard cheese (n = 5), and soft cheese (n = 3) representing seven popular brands were collected. The samples were analyzed by Ultra High-Performance Liquid Chromatography Fluorescence Detection. AFM1 was detected in 40 samples (80 %), while 17 (34 %) and 37 (74 %) of the samples had AFM1 levels exceeding the maximum permitted limit set by Codex Alimentarius Commission (0.5 ppb) and the Netherlands (0.2 ppb). Further, 10 samples violated the Sri Lankan maximum limit of 1 ppb. Thirteen out of the 14 hard cheese (92.9 %, 0.11-14.43 ppb) and all semi-hard cheese samples (100 %, 0.29-0.65 ppb) contained AFM1. Most of the soft (66.7 %, 0.35-0.45 ppb) and processed (71.4 %, 0.11-1.35 ppb) cheese samples had AFM1. Most of the locally manufactured cheese products in Sri Lankan market may pose health risks to consumers. The results highlight the significance of regular monitoring of AFM1 in dairy products and the importance of updating regulations on par with international standards concurrently to ensure consumer safety.
Collapse
Affiliation(s)
- Asanka Mudannayake
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sachini Karunarathne
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Pasindu W. Jayasooriya
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Diani Nanayakkara
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Ayesh Abesooriya
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Susil Silva
- Department of Animal Production and Health, Peradeniya (20400), Sri Lanka
| | - Ruchika Fernando
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
4
|
Altamirano-Gutiérrez W, Molina-Botero IC, Fuentes-Navarro E, Arango J, Salazar-Cubillas K, Paucar R, Gómez-Bravo C. Bamboo forage in Peruvian Amazon: a potential feed for cattle. Trop Anim Health Prod 2023; 55:288. [PMID: 37578575 DOI: 10.1007/s11250-023-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
During the dry and rainy seasons of the Northeastern Zone of Peru, a chemical characterization of five species of bamboo prevalent in the area (Guadua lynnclarkiae, G. takahashiae, Bambusa vulgaris, G. weberbaueri, and Dendrocalamus asper) was conducted. Then, the effect of supplementing bamboo leaves (0, 20, and 40% inclusion of D. asper) on the intake and live weight gain of 18 Gyr × Holstein heifers was evaluated for 28 days. Among the species evaluated, D. asper has the greatest crude protein (CP) concentration (158-166 g/kg Dry matter- DM), post-ruminal CP supply (127 g/kg DM), and in vitro organic matter digestibility (444-456 g/kg DM) but similar concentrations of crude ash (124 g/kg DM), calcium (2.4-2.8 mg/g), phosphorus (0.7-2.1 mg/g), protein fractions A, B1, B2, B3, C (45, 5, 35, 56, and 17g/kg DM, respectively), rumen-undegraded CP (31% CP), neutral detergent fiber (NDF, 685g/kg DM), and acid detergent fiber (ADF, 357 g/kg DM) than the other species evaluated. Dry matter intake was higher in the control treatment and in the 20% bamboo leaf inclusion treatment than in the 40% bamboo inclusion treatment. Intake of CP and NDF decreased with the increase in bamboo inclusion. Despite the differences in DM, CP, and NDF intake, the live weight gain remained similar across treatments. However, there was a greater feed conversion in the 20% bamboo leaf inclusion treatment. During the dry season, bamboo leaves can be used as an alternative supplement at a maximum inclusion of 20% without affecting the live weight gain.
Collapse
Affiliation(s)
- W Altamirano-Gutiérrez
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru
| | - I C Molina-Botero
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru
| | - E Fuentes-Navarro
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru
| | - J Arango
- Tropical Forages Program of the International Center for Tropical Agriculture (CIAT), Km 17, Palmira, 763022, Valle del Cauca, Colombia
| | - K Salazar-Cubillas
- Institute of Animal Nutrition and Physiology, Christian-Albrechts- Universität zu Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany
| | - R Paucar
- International Bamboo and Rattan Organization - INBAR, Av. Centro de convenciones Campo Ferial, Junín, Satipo, Peru
| | - C Gómez-Bravo
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru.
| |
Collapse
|
5
|
Sandoval DF, Florez JF, Enciso Valencia KJ, Sotelo Cabrera ME, Stefan B. Economic-environmental assessment of silvo-pastoral systems in Colombia: An ecosystem service perspective. Heliyon 2023; 9:e19082. [PMID: 37636404 PMCID: PMC10448473 DOI: 10.1016/j.heliyon.2023.e19082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Cattle production in Colombia has an important social and economic role but causes considerable environmental impacts, such as deforestation and greenhouse gas emissions by ruminants, particularly methane. Thus, technological innovations aimed at reducing these impacts must focus on both economic and environmental sustainability. Silvo-pastoral systems (SPS) offer productivity increases while generating environmental benefits and ecosystem services and are therefore at the center of debate around sustainable production alternatives. The objective of this article is to evaluate the economic-environmental performance of two proposed SPS for a cattle fattening system for the Colombian context: (i) Urochloa brizantha cv. Toledo and (ii) Urochloa hybrid cv. Cayman, both in association with Leucaena leucocephala trees for browsing and shade provision. They are compared with the respective base scenarios of only using the grasses in monocultures. The study consists of a financial analysis, which estimates potential profitability increases in beef production in the SPS, and an environmental evaluation, which estimates the monetary values of microclimatic regulation and reduction of methane emissions. The value of methane emission reductions is then integrated into a combined economic-environmental evaluation. Results show that both SPS improve the profitability indicators of the production system and reduce the probability of economic loss. Likewise, the reduction of methane emissions in the SPS is estimated at US$6.12 per cattle, and the economic value of microclimatic regulation at US$2,026 per hectare.
Collapse
Affiliation(s)
- Danny Fernando Sandoval
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Jesús Fernando Florez
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Karen Johanna Enciso Valencia
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Mauricio Efren Sotelo Cabrera
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Burkart Stefan
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| |
Collapse
|
6
|
Relationship between Chemical Composition and In Vitro Methane Production of High Andean Grasses. Animals (Basel) 2022; 12:ani12182348. [PMID: 36139207 PMCID: PMC9495204 DOI: 10.3390/ani12182348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary High Andean grasses have phenological cycles that are influenced by the season of the year (rainy and dry), which could affect their nutritional chemical composition and methane production. Based on this, the in vitro digestibility technique was used to measure this effect. The results of this study show that there is an effect of the chemical composition on methane production and that it changes depending on the season of the year. Abstract The present study aims to establish the relationship between chemical composition and in vitro methane (CH4) production of high Andean grasses. For this purpose, eight species were collected in dry and rainy seasons: Alchemilla pinnata, Distichia muscoides, Carex ecuadorica, Hipochoeris taraxacoides, Mulhenbergia fastigiata, Mulhenbergia peruviana, Stipa brachiphylla and Stipa mucronata. They were chemically analyzed and incubated under an in vitro system. Species such as A. pinnata and H. taraxacoides were characterized by high crude protein (CP. 124 g/kg DM) and low neutral detergent fiber (NDF. 293 g/kg DM) contents in both seasons, contrary to Stipa grasses. This same pattern was obtained for H. taraxacoides, which presented the highest values of gas production, organic matter digestibility (DOM), metabolizable energy (ME) and CH4 production (241 mL/g DM, 59% DOM, 8.4 MJ ME/kg DM and 37.7 mL CH4/g DM, on average). For most species, the content of CP, acid detergent fiber (FDA) and ME was higher in the rainy season than in the dry season, which was the opposite for CH4 production (p ≥ 0.05). In general, the nutritional content that most explained the behavior of CH4 production was the NDF content (R2 = 0.69). Grasses characterized by high NDF content produced less CH4 (R = −0.85).
Collapse
|