1
|
Demmer W, Schinacher J, Wiggenhauser PS, Giunta RE. Use of Acellular Matrices as Scaffolds in Cartilage Regeneration: A Systematic Review. Adv Wound Care (New Rochelle) 2024; 13:625-638. [PMID: 38775424 DOI: 10.1089/wound.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Significance: Cartilage regeneration remains a significant challenge in the field of regenerative medicine. Acellular matrix (AM)-based cartilage tissue regeneration offers an innovative approach to repairing cartilage defects by providing a scaffold for new tissue growth. Its significance lies in its potential to restore joint function, mitigate pain, and improve the quality of life for patients suffering from cartilage-related injuries and conditions. Recent Advances: Recent advances in AM-based cartilage regeneration have focused on enhancing scaffold properties for improved cell adhesion, proliferation, and differentiation. Moreover, several scaffold techniques such as combining acellular dermal matrix (ADM) and acellular cartilage matrix (ACM) with cartilage tissue, as well as biphasic scaffolding, enjoy rising research activity. Incorporating bioactive factors and advanced manufacturing techniques holds promise for producing more biomimetic scaffolds, advancing efficient cartilage repair and regeneration. Critical Issues: Obstacles in AM-based cartilage regeneration include achieving proper integration with the surrounding tissue and ensuring long-term durability of the regenerated cartilage. Furthermore, issues such as high costs and limited availability of suitable cells for scaffold seeding must be considered. The heterogeneity and limited regenerative capabilities of cartilage need to be addressed for successful clinical translation. Future Directions: Research should focus on exploring advanced biomaterials and developing new techniques, regarding easily reproducible scaffolds, ideally constructed from clinically validated and readily available commercial products. Findings underline the potential of AM-based approaches, especially the rising exploration of tissue-derived ADM and ACM. In future, the primary objective should not only be the regeneration of small cartilage defects but rather focus on fully regenerating a joint or larger cartilage defect.
Collapse
|
2
|
Buzza A, Tapas K, Anders J, Jenkins M, Moffitt M. Photobiomodulation for pain relief: Model-based estimates of effective doses of light at the neural target. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112929. [PMID: 38759478 PMCID: PMC11482420 DOI: 10.1016/j.jphotobiol.2024.112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
INTRODUCTION Photobiomodulation (PBM) has been studied since the 1960s as a clinical tool. More recently, PBM has been observed to reduce compound action potential components and hypersensitivities associated with neuropathic pains. However, no definitive description of efficacious light parameters has been determined. Some reasons may be that previous meta-analyses and reviews have focused on emitter output rather than the light at the target tissue and have included data sets that are large but with notable variability (e.g., combining data from various disease etiologies, and data from PBM at various wavelengths). This fact has made it difficult to successfully define the range of effective parameters. METHODS In this study, photon propagation software was used to estimate irradiance at a target nerve using several published data sets chosen for their narrow criteria to minimize variability. Utilizing these estimates, effective and ineffective light irradiances at the nerve of interest for wavelengths of 633 nm or 808-830 nm were examined and estimated. These estimates are focused on the amount of light required to achieve a reduction in pain or a surrogate measure via a hypothesized nerve block mechanism. RESULTS Accounting for irradiance at the target nerve yielded a clear separation of PBM doses that achieved small-fiber nerve block from those that did not. For both the 633 nm group and the 808-830 group, the irradiance separation threshold followed a nonlinear path with respect to PBM application duration, where shorter durations required higher irradiances, and longer durations required lower irradiances. Using the same modeling methods, irradiance was estimated as a function of depth from a transcutaneous source (distance from skin surface) for emitter output power using small or large emitter sizes. CONCLUSION Taken together, the results of this study can be used to estimate effective PBM dosing schemes to achieve small-fiber inhibition for various anatomical scenarios.
Collapse
Affiliation(s)
- Andrew Buzza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kalista Tapas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Juanita Anders
- Department of Anatomy, Physiology, and Genetics, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Benavides-Lara J, Siegel AP, Tsoukas MM, Avanaki K. High-frequency photoacoustic and ultrasound imaging for skin evaluation: Pilot study for the assessment of a chemical burn. JOURNAL OF BIOPHOTONICS 2024; 17:e202300460. [PMID: 38719468 DOI: 10.1002/jbio.202300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 07/13/2024]
Abstract
Skin architecture and its underlying vascular structure could be used to assess the health status of skin. A non-invasive, high resolution and deep imaging modality able to visualize skin subcutaneous layers and vasculature structures could be useful for determining and characterizing skin disease and trauma. In this study, a multispectral high-frequency, linear array-based photoacoustic/ultrasound (PAUS) probe is developed and implemented for the imaging of rat skin in vivo. The study seeks to demonstrate the probe capabilities for visualizing the skin and its underlying structures, and for monitoring changes in skin structure and composition during a 5-day course of a chemical burn. We analayze composition of lipids, water, oxy-hemoglobin, and deoxy-hemoglobin (for determination of oxygen saturation) in the skin tissue. The study successfully demonstrated the high-frequency PAUS imaging probe was able to provide 3D images of the rat skin architecture, underlying vasculature structures, and oxygen saturation, water, lipids and total hemoglobin.
Collapse
Affiliation(s)
- Juliana Benavides-Lara
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda P Siegel
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Maria M Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Wang A, Kwon D, Kim E, Oleru O, Seyidova N, Taub PJ. Statistical fragility of outcomes in acellular dermal matrix literature: A systematic review of randomized controlled trials. J Plast Reconstr Aesthet Surg 2024; 91:284-292. [PMID: 38432086 PMCID: PMC10984759 DOI: 10.1016/j.bjps.2024.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Acellular dermal matrix (ADM) is commonly used in plastic and reconstructive surgery. With the abundance of randomized controlled trials (RCTs) reporting P-values for ADM outcomes, this study used the fragility index (FI), reverse fragility index (rFI), and fragility quotient (FQ) to evaluate the statistical stability of the outcomes in ADM RCTs. METHODS PubMed, Embase, SCOPUS, Medline, and Cochrane databases were reviewed for ADM RCTs (2003-present) reporting a dichotomous, categorical outcome. FI and rFI (event reversals influencing outcome significance) and FQ (standardized fragility) were calculated and reported as median. Subgroup analysis was performed based on intervention types. RESULTS Among the 127 studies screened, 56 RCTs with 579 outcomes were included. The median FI stood at 4 (3-5) and FQ was 0.04 (0.03-0.07). Only 101 outcomes were statistically significant with a median FI of 3 (1-6) and FQ of 0.04 (0.02-0.08). The nonsignificant outcomes had a median FI of 4 (3-5) and FQ of 0.04 (0.03-0.07). Notably, 26% of the outcomes had several patients lost to follow up equal to or surpassing the FI. Based on the intervention type, the median FIs showed minor fluctuations but remained low. CONCLUSIONS Outcomes from ADM-related RCTs were statistically fragile. Slight outcome reversals or maintenance of patient follow-up can alter the significance of results. Therefore, future researchers are recommended to jointly report FI, FQ, and P-values to offer a comprehensive view of the robustness in ADM literature.
Collapse
Affiliation(s)
- Anya Wang
- Icahn School of Medicine at Mount Sinai, Division of Plastic and Reconstructive Surgery, New York, NY 10029, USA
| | - Daniel Kwon
- Icahn School of Medicine at Mount Sinai, Division of Plastic and Reconstructive Surgery, New York, NY 10029, USA
| | - Esther Kim
- Icahn School of Medicine at Mount Sinai, Division of Plastic and Reconstructive Surgery, New York, NY 10029, USA
| | - Olachi Oleru
- Icahn School of Medicine at Mount Sinai, Division of Plastic and Reconstructive Surgery, New York, NY 10029, USA
| | - Nargiz Seyidova
- Icahn School of Medicine at Mount Sinai, Division of Plastic and Reconstructive Surgery, New York, NY 10029, USA
| | - Peter J Taub
- Icahn School of Medicine at Mount Sinai, Division of Plastic and Reconstructive Surgery, New York, NY 10029, USA.
| |
Collapse
|
5
|
Ru J, Zhang Q, Zhu S, Cai J, He Y, Lu F. Delivery of adipose-derived growth factors from heparinized adipose acellular matrix accelerates wound healing. Front Bioeng Biotechnol 2023; 11:1270618. [PMID: 37854882 PMCID: PMC10579818 DOI: 10.3389/fbioe.2023.1270618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Dermal white adipocytes are closely associated with skin homeostasis and wound healing. However, it has not been fully investigated whether adipose-derived products improve wound healing. Here, we obtained adipose acellular matrix (AAM) and adipose-derived growth factors (ADGFs) from human adipose tissue and fabricated an ADGF-loaded AAM via surface modification with heparin. The product, HEP-ADGF-AAM, contained an adipose-derived scaffold and released ADGFs in a controlled fashion. To test its efficacy in promoting wound healing, mice with full thickness wound received three different treatments: HEP-ADGF-AAM, AAM and ADM. Control mice received no further treatments. Among these treatments, HEP-ADGF-AAM best improved wound healing. It induced adipogenesis in situ after in vivo implantation and provided an adipogenic microenvironment for wounds by releasing ADGFs. HEP-ADGF-AAM not only induced adipocyte regeneration, but also enhanced fibroblast migration, promoted vessel formation, accelerated wound closure, and enhanced wound epithelialization. Moreover, there was a close interaction between HEP-ADGF-AAM and the wound bed, and collagen was turned over in HEP-ADGF-AAM. These results show that HEP-ADGF-AAM might substantially improve re-epithelialization, angiogenesis, and skin appendage regeneration, and is thus a promising therapeutic biomaterial for skin wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Yunfan He
- *Correspondence: Yunfan He, ; Feng Lu,
| | - Feng Lu
- *Correspondence: Yunfan He, ; Feng Lu,
| |
Collapse
|
6
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
7
|
Mak CCH, To K, Fekir K, Brooks RA, Khan WS. Infrapatellar fat pad adipose-derived stem cells co-cultured with articular chondrocytes from osteoarthritis patients exhibit increased chondrogenic gene expression. Cell Commun Signal 2022; 20:17. [PMID: 35151341 PMCID: PMC8841120 DOI: 10.1186/s12964-021-00815-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Aim The variable results in clinical trials of adipose tissue-derived stem cells (ASCs) for chondral defects may be due to the different ex vivo culture conditions of the ASCs which are implanted to treat the lesions. We sought to determine the optimal in vitro chondrocyte co-culture condition that promotes infrapatellar fat pad-derived (IFPD) ASC chondrogenic gene expression in a novel co-culture combination. Methods In our study, we utilized an in vitro autologous co-culture of IFPD ASCs and articular chondrocytes derived from Kellgren–Lawrence Grade III/IV osteoarthritic human knee joints at ASC-to-chondrocyte seeding log ratios of 1:1, 10:1, and 100:1. Gene expression following in vitro co-culture was quantified by RT-qPCR with a panel comprising COL1A1, COL2A1, COL10A1, L-SOX5, SOX6, SOX9, ACAN, HSPG2, and COMP for chondrogenic gene expression. Results The chondrogenic gene expression profiles from co-cultures were greater than would be expected from an expression profile modeled from chondrocyte and ASC-only monocultures. Additionally, chondrogenic gene expression decreased with increasing ASC-to-chondrocyte seeding ratios. Conclusions These findings provide insight into the mechanisms underlying clinical ASC therapies and signifies that IFPD ASCs pre-conditioned by chondrocyte co-culture may have improved chondrogenic potential for cartilage repair. This model can help further understand IFPD ASCs in chondral and osteochondral repair and the chondrogenic pathways involved. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00815-x.
Collapse
|
8
|
Ye C, Chen J, Qu Y, Qi H, Wang Q, Yang Z, Wu A, Wang F, Li P. Naringin in the repair of knee cartilage injury via the TGF-β/ALK5/Smad2/3 signal transduction pathway combined with an acellular dermal matrix. J Orthop Translat 2022; 32:1-11. [PMID: 35591936 PMCID: PMC9072805 DOI: 10.1016/j.jot.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Qu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Qingfu Wang
- Orthopedics Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengxian Wang
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Corresponding author. Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Street, Beijing, 100700, China.
| |
Collapse
|
9
|
Petrie K, Cox CT, Becker BC, MacKay BJ. Clinical applications of acellular dermal matrices: A review. Scars Burn Heal 2022; 8:20595131211038313. [PMID: 35083065 PMCID: PMC8785275 DOI: 10.1177/20595131211038313] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The extracellular matrix (ECM) plays an integral role in wound healing. It provides both structure and growth factors that allow for the organised cell proliferation. Large or complex tissue defects may compromise host ECM, creating an environment that is unfavourable for the recovery of anatomical function and appearance. Acellular dermal matrices (ADMs) have been developed from a variety of sources, including human (HADM), porcine (PADM) and bovine (BADM), with multiple different processing protocols. The objective of this report is to provide an overview of current literature assessing the clinical utility of ADMs across a broad spectrum of applications. METHODS PubMed, MEDLINE, EMBASE, Scopus, Cochrane and Web of Science were searched using keywords 'acellular dermal matrix', 'acellular dermal matrices' and brand names for commercially available ADMs. Our search was limited to English language articles published from 1999 to 2020 and focused on clinical data. RESULTS A total of 2443 records underwent screening. After removing non-clinical studies and correspondence, 222 were assessed for eligibility. Of these, 170 were included in our synthesis of the literature. While the earliest ADMs were used in severe burn injuries, usage has expanded to a number of surgical subspecialties and procedures, including orthopaedic surgery (e.g. tendon and ligament reconstructions), otolaryngology, oral surgery (e.g. treating gingival recession), abdominal wall surgery (e.g. hernia repair), plastic surgery (e.g. breast reconstruction and penile augmentation), and chronic wounds (e.g. diabetic ulcers). CONCLUSION Our understanding of ADM's clinical utility continues to evolve. More research is needed to determine which ADM has the best outcomes for each clinical scenario. LAY SUMMARY Large or complex wounds present unique reconstructive and healing challenges. In normal healing, the extracellular matrix (ECM) provides both structural and growth factors that allow tissue to regenerate in an organised fashion to close the wound. In difficult or large soft-tissue defects, however, the ECM is often compromised. Acellular dermal matrix (ADM) products have been developed to mimic the benefits of host ECM, allowing for improved outcomes in a variety of clinical scenarios. This review summarises the current clinical evidence regarding commercially available ADMs in a wide variety of clinical contexts.
Collapse
Affiliation(s)
- Kyla Petrie
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cameron T Cox
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Brendan J MacKay
- Texas Tech University Health Sciences Center, Lubbock, TX, USA.,University Medical Center, Lubbock, TX, USA
| |
Collapse
|
10
|
Vahedi P, Moghaddamshahabi R, Webster TJ, Calikoglu Koyuncu AC, Ahmadian E, Khan WS, Jimale Mohamed A, Eftekhari A. The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. Int J Mol Sci 2021; 22:9215. [PMID: 34502123 PMCID: PMC8431575 DOI: 10.3390/ijms22179215] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.
Collapse
Affiliation(s)
- Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran;
| | - Rana Moghaddamshahabi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, North Cyprus, Turkey;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Ayse Ceren Calikoglu Koyuncu
- Materials and Metallurgical Engineering Department, Faculty of Technology, Marmara University, Istanbul 34722, Turkey;
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 51666-15731, Iran;
| | - Wasim S. Khan
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ali Jimale Mohamed
- Department of Pharmacology, Faculty of Medicine, Somali National University, Mogadishu 801, Somalia;
| | - Aziz Eftekhari
- Department of Toxicology and Pharmacology, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences (SAS), Dúbravská cesta, 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
11
|
Decellularized dermis extracellular matrix alloderm mechanically strengthens biological engineered tunica adventitia-based blood vessels. Sci Rep 2021; 11:11384. [PMID: 34059745 PMCID: PMC8166942 DOI: 10.1038/s41598-021-91005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
The ideal engineered vascular graft would utilize human-derived materials to minimize foreign body response and tissue rejection. Current biological engineered blood vessels (BEBVs) inherently lack the structure required for implantation. We hypothesized that an ECM material would provide the structure needed. Skin dermis ECM is commonly used in reconstructive surgeries, is commercially available and FDA-approved. We evaluated the commercially-available decellularized skin dermis ECM Alloderm for efficacy in providing structure to BEBVs. Alloderm was incorporated into our lab’s unique protocol for generating BEBVs, using fibroblasts to establish the adventitia. To assess structure, tissue mechanics were analyzed. Standard BEBVs without Alloderm exhibited a tensile strength of 67.9 ± 9.78 kPa, whereas Alloderm integrated BEBVs showed a significant increase in strength to 1500 ± 334 kPa. In comparison, native vessel strength is 1430 ± 604 kPa. Burst pressure reached 51.3 ± 2.19 mmHg. Total collagen and fiber maturity were significantly increased due to the presence of the Alloderm material. Vessels cultured for 4 weeks maintained mechanical and structural integrity. Low probability of thrombogenicity was confirmed with a negative platelet adhesion test. Vessels were able to be endothelialized. These results demonstrate the success of Alloderm to provide structure to BEBVs in an effective way.
Collapse
|
12
|
Wang Y, Xu Y, Zhou G, Liu Y, Cao Y. Biological Evaluation of Acellular Cartilaginous and Dermal Matrixes as Tissue Engineering Scaffolds for Cartilage Regeneration. Front Cell Dev Biol 2021; 8:624337. [PMID: 33505975 PMCID: PMC7829663 DOI: 10.3389/fcell.2020.624337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
An acellular matrix (AM) as a kind of natural biomaterial is gaining increasing attention in tissue engineering applications. An acellular cartilaginous matrix (ACM) and acellular dermal matrix (ADM) are two kinds of the most widely used AMs in cartilage tissue engineering. However, there is still debate over which of these AMs achieves optimal cartilage regeneration, especially in immunocompetent large animals. In the current study, we fabricated porous ADM and ACM scaffolds by a freeze-drying method and confirmed that ADM had a larger pore size than ACM. By recolonization with goat auricular chondrocytes and in vitro culture, ADM scaffolds exhibited a higher cell adhesion rate, more homogeneous chondrocyte distribution, and neocartilage formation compared with ACM. Additionally, quantitative polymerase chain reaction (qPCR) indicated that expression of cartilage-related genes, including ACAN, COLIIA1, and SOX9, was significantly higher in the ADM group than the ACM group. Furthermore, after subcutaneous implantation in a goat, histological evaluation showed that ADM achieved more stable and matured cartilage compared with ACM, which was confirmed by quantitative data including the wet weight, volume, and contents of DNA, GAG, total collagen, and collagen II. Additionally, immunological assessment suggested that ADM evoked a low immune response compared with ACM as evidenced by qPCR and immunohistochemical analyses of CD3 and CD68, and TUNEL. Collectively, our results indicate that ADM is a more suitable AM for cartilage regeneration, which can be used for cartilage regeneration in immunocompetent large animals.
Collapse
Affiliation(s)
- Yahui Wang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Yong Xu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Cao
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhong YC, Wang SC, Han YH, Wen Y. Recent Advance in Source, Property, Differentiation, and Applications of Infrapatellar Fat Pad Adipose-Derived Stem Cells. Stem Cells Int 2020; 2020:2560174. [PMID: 32215015 PMCID: PMC7081037 DOI: 10.1155/2020/2560174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Infrapatellar fat pad (IPFP) can be easily obtained during knee surgery, which avoids the damage to patients for obtaining IPFP. Infrapatellar fat pad adipose-derived stem cells (IPFP-ASCs) are also called infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) because the morphology of IPFP-ASCs is similar to that of bone marrow mesenchymal stem cells (BM-MSCs). IPFP-ASCs are attracting more and more attention due to their characteristics suitable to regenerative medicine such as strong proliferation and differentiation, anti-inflammation, antiaging, secreting cytokines, multipotential capacity, and 3D culture. IPFP-ASCs can repair articular cartilage and relieve the pain caused by osteoarthritis, so most of IPFP-related review articles focus on osteoarthritis. This article reviews the anatomy and function of IPFP, as well as the discovery, amplification, multipotential capacity, and application of IPFP-ASCs in order to explain why IPFP-ASC is a superior stem cell source in regenerative medicine.
Collapse
Affiliation(s)
- Yu-chen Zhong
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Shi-chun Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Yin-he Han
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Stocco E, Barbon S, Piccione M, Belluzzi E, Petrelli L, Pozzuoli A, Ramonda R, Rossato M, Favero M, Ruggieri P, Porzionato A, Di Liddo R, De Caro R, Macchi V. Infrapatellar Fat Pad Stem Cells Responsiveness to Microenvironment in Osteoarthritis: From Morphology to Function. Front Cell Dev Biol 2019; 7:323. [PMID: 31921840 PMCID: PMC6914674 DOI: 10.3389/fcell.2019.00323] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
Recently, infrapatellar fat pad (IFP) has been considered as a source of stem cells for cartilage regeneration in osteoarthritis (OA) due to their ability for differentiation into chondrocytes. However, stressful conditions, like that related to OA, may induce a pathogenic reprograming. The aim of this study was to characterize the structural and functional properties of a new population of stem cells isolated from osteoarthritic infrapatellar fat pad (OA-IFP). Nine OA patients undergoing total knee arthroplasty (TKA) were enrolled in this study [median age = 74 years, interquartile range (IQR) = 78.25-67.7; median body mass index = 29.4 Kg/m2, IQR = 31.7-27.4]. OA-IFP stem cells were isolated and characterized for morphology, stemness, metabolic profile and multi-differentiative potential by transmission electron microscopy, flow cytometric analysis, gene expression study and cytochemistry. OA-IFP stem cells displayed a spindle-like morphology, self-renewal potential and responsiveness (CD44, CD105, VEGFR2, FGFR2, IL1R, and IL6R) to microenvironmental stimuli. Characterized by high grade of stemness (STAT3, NOTCH1, c-Myc, OCT-4, KLF4, and NANOG), the cells showed peculiar immunophenotypic properties (CD73+/CD39+/CD90+/CD105+/CD44–/+/CD45–). The expression of HLA-DR, CD34, Fas and FasL was indicative of a possible phenotypic reprograming induced by inflammation. Moreover, the response to mechanical stimuli together with high expression level of COL1A1 gene, suggested their possible protective response against in vivo mechanical overloading. Conversely, the low expression of CD38/NADase was indicative of their inability to counteract NAD+-mediated OA inflammation. Based on the ultrastructural, immunophenotypic and functional characterization, OA-IFP stem cells were hypothesized to be primed by the pathological environment and to exert incomplete protective activity from OA inflammation.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, Padua, Italy
| | - Silvia Barbon
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, Padua, Italy
| | - Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padua, Italy.,Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padua, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padua, Italy.,Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padua, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| | - Marco Rossato
- Clinica Medica 3, Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, Padua, Italy.,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| |
Collapse
|
15
|
Ye K, Traianedes K, Robins SA, Choong PFM, Myers DE. Osteochondral repair using an acellular dermal matrix-pilot in vivo study in a rabbit osteochondral defect model. J Orthop Res 2018; 36:1919-1928. [PMID: 29244224 DOI: 10.1002/jor.23837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED The aim of this pilot project was to introduce a novel use of acellular dermal matrix (ADM) in combination with infrapatellar fat pad mesenchymal stromal cells (IPFP-MSCs) to effect repair in a rabbit osteochondral defect model. ADM, in a range of surgical procedures, has been shown to promote remodelling of tissue at the site of implantation. Rabbit-derived ADM (rabADM) was prepared from the skin of donor rabbits. Autologous IPFP-MSCs were obtained at the time of knee surgery. Osteochondral defects (4 mm cartilage outer/2 mm central bone defect) were drilled into distal femoral condyles of 12 New Zealand White rabbits. Treatments groups: (i) defect only; (ii) rabADM alone; (iii) IPFP-MSCs alone; and (iv) rabADM with IPFP-MSCs. Condyles were harvested at 12 weeks, and analyzed using histology, immunohistochemistry (types I and II collagen) and histomorphometry to evaluate osteochondral repair. The rabADM only group achieved the highest ratio of type II to non-type II collagen (77.3%) using areal measures (similar to normal cartilage), which indicated a higher quality of cartilage repair. The addition of IPFP-MSCs, with or without rabADM, formed a fibrous collagen cap above the lesion site not seen with rabADM alone. Macroscopically, there was no joint erosion, inflammation, swelling or deformity, and all animals maintained full range of motion. CONCLUSIONS RabADM alone resulted in neocartilage formation similar to native cartilage. IPFP-MSCs limited osteochondral repair and contributed to fibrosis, even in combination with the rabADM. Further studies using ADM for osteochondral repair are warranted in a more appropriate pre-clinical model of osteochondral repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1919-1928, 2018.
Collapse
Affiliation(s)
- Ken Ye
- Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Kathy Traianedes
- Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Victoria Parade, Fitzroy, 3065, Australia.,Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Shalley A Robins
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Peter F M Choong
- Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Damian E Myers
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia.,Victoria University, Sunshine Hospital, St Albans, Australia.,Australian Institute for Musculoskeletal Science, Victoria University and The University of Melbourne, Western Centre for Health and Research Education, Sunshine Hospital, St Albans, Australia
| |
Collapse
|
16
|
Monibi FA, Bozynski CC, Kuroki K, Stoker AM, Pfeiffer FM, Sherman SL, Cook JL. Development of a Micronized Meniscus Extracellular Matrix Scaffold for Potential Augmentation of Meniscal Repair and Regeneration. Tissue Eng Part C Methods 2017; 22:1059-1070. [PMID: 27824291 DOI: 10.1089/ten.tec.2016.0276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decellularized scaffolds composed of extracellular matrix (ECM) hold promise for repair and regeneration of the meniscus, given the potential for ECM-based biomaterials to aid in stem cell recruitment, infiltration, and differentiation. The objectives of this study were to decellularize canine menisci to fabricate a micronized, ECM-derived scaffold and to determine the cytocompatibility and repair potential of the scaffold ex vivo. Menisci were decellularized with a combination of physical agitation and chemical treatments. For scaffold fabrication, decellularized menisci were cryoground into a powder and the size and morphology of the ECM particles were evaluated using scanning electron microscopy. Histologic and biochemical analyses of the scaffold confirmed effective decellularization with loss of proteoglycan from the tissue but no significant reduction in collagen content. When washed effectively, the decellularized scaffold was cytocompatible to meniscal fibrochondrocytes, synoviocytes, and whole meniscal tissue based on the resazurin reduction assay and histologic evaluation. In an ex vivo model for meniscal repair, radial tears were augmented with the scaffold delivered with platelet-rich plasma as a carrier, and compared to nonaugmented (standard-of-care) suture techniques. Histologically, there was no evidence of cellular migration or proliferation noted in any of the untreated or standard-of-care treatment groups after 40 days of culture. Conversely, cellular infiltration and proliferation were noted in scaffold-augmented repairs. These data suggest the potential for the scaffold to promote cellular survival, migration, and proliferation ex vivo. Further investigations are necessary to examine the potential for the scaffold to induce cellular differentiation and functional meniscal fibrochondrogenesis.
Collapse
Affiliation(s)
- Farrah A Monibi
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Chantelle C Bozynski
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Keiichi Kuroki
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri
| | - Aaron M Stoker
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Ferris M Pfeiffer
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri.,3 Department of Bioengineering, University of Missouri , Columbia, Missouri
| | - Seth L Sherman
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - James L Cook
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| |
Collapse
|
17
|
Mohammadi MH, Heidary Araghi B, Beydaghi V, Geraili A, Moradi F, Jafari P, Janmaleki M, Valente KP, Akbari M, Sanati-Nezhad A. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Adv Healthc Mater 2016; 5:2459-2480. [PMID: 27548388 DOI: 10.1002/adhm.201600439] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/30/2016] [Indexed: 12/19/2022]
Abstract
In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes.
Collapse
Affiliation(s)
- Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Vahid Beydaghi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Farshid Moradi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Parya Jafari
- Department of Electrical Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Mohsen Janmaleki
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| | - Karolina Papera Valente
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| |
Collapse
|