1
|
Abbas A, Hamad AA, Ballut OO, El-Gayar RM, Negida A, Raslan AM. Human Amniotic Membrane for Dural Repair and Duraplasty: A Systematic Review of Safety and Efficacy. Cureus 2023; 15:e51117. [PMID: 38274915 PMCID: PMC10808866 DOI: 10.7759/cureus.51117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The use of human amniotic membrane (HAM) has recently gained attention as a promising alternative option for duraplasty due to its superior tensile strength, elasticity, and anti-inflammatory and anti-fibrotic properties, offering greater durability and reliability compared to autologous grafts like the muscle fascia and pericranium. This systematic review aimed to evaluate the complications associated with duraplasty using HAM. We comprehensively searched the PubMed, Scopus, and Web of Science databases for studies on duraplasty with HAM. The eligibility criteria included studies on patients who underwent dural repair with duraplasty using HAM, with or without a control group. Duraplasty involves opening the dura mater, the protective covering of the brain and spinal cord, and using a graft to enlarge the space around the cerebellum. Dual repair, on the other hand, involves repairing the dura mater without opening it and then using a patch to enlarge the space around the cerebellum. Randomized controlled trials, observational studies, case series, and case reports were included, and quality assessment was conducted. Our search yielded 191 articles. Ten studies were included, with a total of 560 participants. The overall incidence of cerebrospinal fluid (CSF) leakage was three (0.63%) out of 478 in the HAM group and three (4.76%) out of 63 in the other methods group (pericranium, temporalis fascia, and biological dural substitutes). Regarding the incidence of postoperative complications, the overall incidence was eight (1.92%) out of 417 in the HAM group and two (8%) out of 25 in the other methods group. The overall incidence of meningitis was one (0.67%) out of 150 in the HAM group and three (10%) out of 30 in the other methods group. In conclusion, duraplasty using HAM may be a safe and effective alternative to traditional methods, with a low incidence of CSF leakage and postoperative complications.
Collapse
Affiliation(s)
- Abdallah Abbas
- Neurology, Faculty of Medicine, Al-Azhar University, New Damietta, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Abdullah A Hamad
- Neurology, Faculty of Medicine, Menoufia University, Shibin El-Kom, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Osam O Ballut
- Neurology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Rawan M El-Gayar
- Neurology, Faculty of Medicine, Zagazig University, Zagazig, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Ahmed Negida
- Neurology, Virginia Commonwealth University, Richmond, USA
- Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, GBR
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Ahmed M Raslan
- Neurological Surgery, Oregon Health & Science University, Portland, USA
| |
Collapse
|
2
|
Chen P, Li F, Wang G, Ying B, Chen C, Tian Y, Chen M, Lee KJ, Ying WB, Zhu J. Toward Highly Matching the Dura Mater: A Polyurethane Integrating Biocompatible, Leak-Proof, and Self-Healing Properties. Macromol Biosci 2023; 23:e2300111. [PMID: 37222304 DOI: 10.1002/mabi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Indexed: 05/25/2023]
Abstract
The dura mater is the final barrier against cerebrospinal fluid leakage and plays a crucial role in protecting and supporting the brain and spinal cord. Head trauma, tumor resection and other traumas damage it, requiring artificial dura mater for repair. However, surgical tears are often unavoidable. To address these issues, the ideal artificial dura mater should have biocompatibility, anti-leakage, and self-healing properties. Herein, this work has used biocompatible polycaprolactone diol as the soft segment and introduced dynamic disulfide bonds into the hard segment, achieving a multifunctional polyurethane (LSPU-2), which integrated the above mentioned properties required in surgery. In particular, LSPU-2 matches the mechanical properties of the dura mater and the biocompatibility tests with neuronal cells demonstrate extremely low cytotoxicity and do not cause any negative skin lesions. In addition, the anti-leakage properties of the LSPU-2 are confirmed by the water permeability tester and the 900 mm H2 O static pressure test with artificial cerebrospinal fluid. Due to the disulfide bond exchange and molecular chain mobility, LSPU-2 could be completely self-healed within 115 min at human body temperature. Thus, LSPU-2 comprises one of the most promising potential artificial dura materials, which is essential for the advancement of artificial dura mater and brain surgery.
Collapse
Affiliation(s)
- Pandi Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Fenglong Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guyue Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Chao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Tian
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yoo-Seong, 34134, Republic of Korea
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|