1
|
Paul Friedman K, Thomas RS, Wambaugh JF, Harrill JA, Judson RS, Shafer TJ, Williams AJ, Lee JYJ, Loo LH, Gagné M, Long AS, Barton-Maclaren TS, Whelan M, Bouhifd M, Rasenberg M, Simanainen U, Sobanski T. Integration of new approach methods for the assessment of data-poor chemicals. Toxicol Sci 2025; 205:74-105. [PMID: 39969258 DOI: 10.1093/toxsci/kfaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The use of new approach methods (NAMs), including high-throughput, in vitro bioactivity data, in setting a point-of-departure (POD) will accelerate the pace of human health hazard assessments. Combining hazard and exposure predictions into a bioactivity:exposure ratio (BER) for use in risk-based prioritization and utilizing NAM-based bioactivity flags to indicate potential hazards of interest for further prediction or mechanism-based screening together comprise a prospective approach for management of substances with limited traditional toxicity testing data. In this work, we demonstrate a NAM-based assessment case study conducted via the Accelerating the Pace of Chemical Risk Assessment initiative, a consortium of international research and regulatory scientists. The primary objective was to develop a reusable and adaptable approach for addressing chemicals with limited traditional toxicity data using a NAM-based POD, BER, and bioactivity-based flags for indication of putative endocrine, developmental, neurological, and immunosuppressive effects via data generation and interpretation for 200 substances. Multiple data streams, including in silico and in vitro NAMs, were used. High-throughput transcriptomics and phenotypic profiling data, as well as targeted biochemical and cell-based assays, were combined with generic high-throughput toxicokinetic models parameterized with chemical-specific data to estimate dose for comparison to exposure predictions. This case study further enables regulatory scientists from different international purviews to utilize efficient approaches for prospective chemical management, addressing hazard and risk-based data needs, while reducing the need for animal studies. This work demonstrates the feasibility of using a battery of toxicodynamic and toxicokinetic NAMs to provide a NAM-based POD for screening-level assessment.
Collapse
Affiliation(s)
- Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Richard S Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Jia-Ying Joey Lee
- Innovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Lit-Hsin Loo
- Innovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Matthew Gagné
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alexandra S Long
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Maurice Whelan
- Joint Research Centre (JRC), European Commission, Ispra (VA) 21047, Italy
| | - Mounir Bouhifd
- Directorate of Prioritisation and Integration, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| | - Mike Rasenberg
- Directorate of Hazard Assessment, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| | - Ulla Simanainen
- Directorate of Prioritisation and Integration, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| | - Tomasz Sobanski
- Directorate of Prioritisation and Integration, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| |
Collapse
|
2
|
Huchthausen J, Braasch J, Escher BI, König M, Henneberger L. Effects of Chemicals in Reporter Gene Bioassays with Different Metabolic Activities Compared to Baseline Toxicity. Chem Res Toxicol 2024; 37:744-756. [PMID: 38652132 PMCID: PMC11110108 DOI: 10.1021/acs.chemrestox.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Strupp C, Corvaro M, Cohen SM, Corton JC, Ogawa K, Richert L, Jacobs MN. Increased Cell Proliferation as a Key Event in Chemical Carcinogenesis: Application in an Integrated Approach for the Testing and Assessment of Non-Genotoxic Carcinogenesis. Int J Mol Sci 2023; 24:13246. [PMID: 37686053 PMCID: PMC10488128 DOI: 10.3390/ijms241713246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In contrast to genotoxic carcinogens, there are currently no internationally agreed upon regulatory tools for identifying non-genotoxic carcinogens of human relevance. The rodent cancer bioassay is only used in certain regulatory sectors and is criticized for its limited predictive power for human cancer risk. Cancer is due to genetic errors occurring in single cells. The risk of cancer is higher when there is an increase in the number of errors per replication (genotoxic agents) or in the number of replications (cell proliferation-inducing agents). The default regulatory approach for genotoxic agents whereby no threshold is set is reasonably conservative. However, non-genotoxic carcinogens cannot be regulated in the same way since increased cell proliferation has a clear threshold. An integrated approach for the testing and assessment (IATA) of non-genotoxic carcinogens is under development at the OECD, considering learnings from the regulatory assessment of data-rich substances such as agrochemicals. The aim is to achieve an endorsed IATA that predicts human cancer better than the rodent cancer bioassay, using methodologies that equally or better protect human health and are superior from the view of animal welfare/efficiency. This paper describes the technical opportunities available to assess cell proliferation as the central gateway of an IATA for non-genotoxic carcinogenicity.
Collapse
Affiliation(s)
| | | | - Samuel M. Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency (US EPA), Research Triangle Park, NC 27711, USA;
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | | | - Miriam N. Jacobs
- United Kingdom Health Security Agency (UK HSA), Radiation, Chemicals and Environmental Hazards, Harwell Innovation Campus, Dicot OX11 0RQ, UK
| |
Collapse
|