1
|
Morgan AN, Fogelson SB, Wills PS, Mincer T, Mejri S, Page A. Hematological changes in Florida pompano (Trachinotus carolinus) supplemented with β-glucan and Pediococcus acidilactici synbiotic. JOURNAL OF FISH BIOLOGY 2024; 104:1091-1111. [PMID: 38174614 DOI: 10.1111/jfb.15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Florida pompano (Trachinotus carolinus) are a species of growing interest for commercial aquaculture. Effective health monitoring is crucial to the successful growout of the species, and prophylactic and therapeutic use of chemicals and antibiotics has been the traditional strategy for promoting stock health. However, concerns about antimicrobial resistance, chemical residues in seafood products and the environment, and resultant immunosuppression have prompted the industry to identify alternative management strategies, including supplementation with prebiotics, probiotics, and combinations of both (synbiotics). The objectives of this study are to determine and compare hematological, plasma biochemical, and plasma protein electrophoresis data of synbiotic-supplemented (β-glucan and Pediococcus acidilactici) and non-supplemented Florida pompano. Reference intervals for blood analytes are provided for both groups and for subgroups (females, males, large, and small fish) where statistically significant results exist. There are no differences between the hematological and plasma biochemistry analytes between the supplemented and control groups, except for blood urea nitrogen and carbon dioxide, indicating a possible effect of synbiotic supplementation on gill function and osmoregulation. Sex-related and size-related differences are observed within each of the control and supplemented groups; however, biometric measurements do not strongly correlate with blood analytes. These data represent baseline hematological and plasma biochemical data in the Florida pompano and indicate the safety of synbiotic supplementation in this commercially important species. This study serves to further the commercialization of Florida pompano by providing blood analyte reference intervals for health monitoring in the aquaculture setting.
Collapse
Affiliation(s)
- Ashley N Morgan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | | | - Paul S Wills
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Tracy Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Sahar Mejri
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
2
|
Cray C. Protein electrophoresis of non-traditional species: A review. Vet Clin Pathol 2021; 50:478-494. [PMID: 34881455 DOI: 10.1111/vcp.13067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
EPH has been demonstrated to be a useful tool in companion animals while providing an opportunity to characterize globulinemias, including paraproteinemia. In EPH of non-traditional species, these same applications are important, but the primary use is to gauge the acute-phase and humoral immune responses. This includes the valid quantitation of albumin as well as the examination of fractions reflective of increases in acute-phase reactants and immunoglobulins. Agarose gel EPH and, more recently, capillary zone EPH have been applied to samples from these species. Performing these analyses provides special challenges in the placement of fraction delimits, generation of RIs, and interpretation of results. Recommended as part of routine bloodwork, EPH can also provide key results that are helpful in clinical and field-based health assessments as well as in prognostication.
Collapse
Affiliation(s)
- Carolyn Cray
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Malinowski CR, Stacy NI, Coleman FC, Cusick JA, Dugan CM, Koenig CC, Ragbeer NK, Perrault JR. Mercury offloading in gametes and potential adverse effects of high mercury concentrations in blood and tissues of Atlantic Goliath Grouper Epinephelus itajara in the southeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146437. [PMID: 33744588 DOI: 10.1016/j.scitotenv.2021.146437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a ubiquitous and non-essential heavy metal that is highly toxic to aquatic organisms. Few studies examine Hg and its effects on wild fish populations. Here, we investigated the potential effects of Hg exposure on a large and long-lived marine species of conservation concern, the vulnerable Atlantic Goliath Grouper Epinephelus itajara. Our objectives were (1) to measure Hg (methyl-Hg; and total Hg = combined methyl-Hg and inorganic-Hg) concentrations in whole blood (WB) and gametes (eggs and sperm); (2) to investigate the relationships between Hg concentrations in muscle and liver with WB and gametes; (3) to investigate the relationships between Hg concentrations in liver, muscle, and WB with hematological and plasma biochemical analytes; and (4) to investigate the relationship between liver Hg and pigmented macrophage aggregates in liver tissue sections. We found several lines of evidence for potential adverse effects on Goliath Grouper health and reproduction by high Hg concentrations in liver, muscle, WB, and gametes, including (1) Hg concentrations in all tissues and gametes were well above observable ranges of marine and freshwater fishes from experimental exposure studies; (2) gamete Hg concentrations were among the highest recorded in wild fishes, with seasonal patterns suggesting females offload significant amounts of Hg into their eggs during the spawning season; (3) Methyl-Hg was highest in muscle, followed by sperm, liver, eggs, and WB; (4) there were significant correlations between liver, muscle, and WB Hg concentrations with various blood analytes; (5) vitellogenin positively correlated with female liver methyl-Hg concentrations, and was abnormally high in males, suggesting direct endocrine effects; and (6) liver total Hg positively correlated with pigmented macrophage aggregate count and percent area. This work will help guide future research examining the potential adverse effects of Hg and its role as an additional stressor on wild fish populations.
Collapse
Affiliation(s)
- Christopher R Malinowski
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA; Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907-2061, USA.
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, PO Box 100136, Gainesville, FL 32610, USA
| | - Felicia C Coleman
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA
| | - Jessica A Cusick
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Carle M Dugan
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Christopher C Koenig
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA
| | - Natassjia K Ragbeer
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Justin R Perrault
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA; Loggerhead Marinelife Center, 14200 U.S. Highway 1, Juno Beach, FL 33408, USA
| |
Collapse
|